
LayoutTransformer: Layout Generation and Completion with Self-attention
Supplementary Material

Kamal Gupta1*, Justin Lazarow2, Alessandro Achille3,
Larry Davis1,3, Vijay Mahadevan3, Abhinav Shrivastava1

1University of Maryland, College Park 2University of California, San Diego 3Amazon AWS

Appendix

A. Architecture and training details
In all our R2 experiments, our base model consists of

d = 512, L = 6, nhead = 8, precision = 8 and dff = 2048.
We also use a dropout of 0.1 at the end of each feedforward
layer for regularization. We fix the the maximum number
of elements in each of the datasets to 128 which covers over
99.9% of the layouts in each of the COCO, Rico and Pub-
LayNet datasets. We also used Adam optimizer [3] with ini-
tial learning rate of 10−4. We train our model for 30 epochs
for each dataset with early stopping based on maximum
log likelihood on validation layouts. Our COCO Bound-
ing Boxes model takes about 6 hours to train on a single
NVIDIA GTX1080 GPU. Batching matters a lot to improve
the training speed. We want to have evenly divided batches,
with minimal padding. We sort the layouts by the number
of elements and search over this sorted list to use find tight
batches for training.

In all our R3 experiments, we change d = 128 and dff =
512, and learning rate to 10−5.

B. Ablation studies
We evaluate the importance of different model compo-

nents with negative log-likelihood on COCO layouts. The
ablation studies show the following:
Small, medium and large elements: NLL of our model for
COCO large, medium, and small boxes is 2.4, 2.5, and 1.8
respectively. We observe that even though discretizing box
coordinates introduces approximation errors, it later allows
our model to be agnostic to large vs small objects.
Varying precision: Increasing it allows us to generate finer
layouts but at the expense of a model with more parameters.
Also, as we increase the precision, NLL increases, suggest-
ing that we might need to train the model with more data to
get similar performance (Table 1).

*Corresponding author, email: kampta@umd.edu
Work started during an internship at Amazon.

Table 1: Effect ofprecision on NLL

nanchors # params COCO Rico PubLayNet

32× 32 19.2 2.28 1.07 1.10

8× 8 19.1 1.69 0.98 0.88
16× 16 19.2 1.97 1.03 0.95
64× 64 19.3 2.67 1.26 1.28
128× 128 19.6 3.12 1.44 1.46

Size of embedding: Increasing the size of the embedding
d improves the NLL, but at the cost of increased number of
parameters (Table 2).

Table 2: Effect of d on NLL

d # params COCO Rico PubLayNet

512 19.2 2.28 1.07 1.10

32 0.8 2.51 1.56 1.26
64 1.7 2.43 1.40 1.19
128 3.6 2.37 1.29 1.57
256 8.1 2.32 1.20 1.56

Model depth: Increasing the depth of the model L, does
not significantly improve the results (Table 3). We fix the
L = 6 in all our experiments.

Table 3: Effect of L on NLL

L # params COCO Rico PubLayNet

6 19.2 2.28 1.07 1.10

2 6.6 2.31 1.18 1.13
4 12.9 2.30 1.12 1.07
8 25.5 2.28 1.11 1.07

Ordering of the elements: Adding position encoding,

mailto:kampta@umd.edu


(a) (b)

Figure 1: Visualizing attention. (a) Image source for the layout (b) In each row, the model is predicting one element at a time (shown in a
green bounding box). While predicting that element, the model pays the most attention to previously predicted bounding boxes (in red).
For example, in the first row, “snow” gets the highest attention score while predicting “skis”. Similarly in the last column, “skis” get the
highest attention while predicting “person”.

Table 4: Effect of other hyperparameters on NLL

Order Split-XY Loss # params COCO Rico PubLayNet

raster Yes NLL 19.2 2.28 1.07 1.10

random 19.2 2.68 1.76 1.46
No 21.2 3.74 2.12 1.87

LS 19.2 1.96 0.88 0.88

makes the self-attention layer dependent to the ordering of
elements. In order to make it depend less on the ordering
of input elements, we take randomly permute the sequence.
This also enables our model to be able to complete any par-
tial layout. Since output is predicted sequentially, our model
is not invariant to the order of output sequence also. In our
experiments, we observed that predicting the elements in
a simple raster scan order of their position improves the
model performance both visually and in terms of negative
log-likelihood. This is intuitive as filling the elements in a
pre-defined order is an easier problem. We leave the task of
optimal ordering of layout elements to generate layouts for
future research. (Table 4).

Discretization strategy: Instead of the factorizing loca-
tion in x-coordinates and y-coordinates, we tried predict-
ing them at once (refer to the Split-xy column of Table 4).
This increases the vocabulary size of the model (since we
use H × H possible locations instead of H alone) and in
turn the number of hyper-parameters with decline in model
performance. An upside of this approach is that generating
new layouts takes less time as we have to make half as many

predictions for each element of the layout (Table 4).

Loss: We tried two different losses, label smoothing [7]
and NLL. Although optimizing using NLL gives better val-
idation performance in terms of NLL (as is expected), we
do not find much difference in the qualitative performance
when using either loss function. (Table 4)

C. Baselines
In this section we give more details on the various base-

lines that we implemented or modified from the author’s
original code. In all the ShapeNet baselines, we used the
models provided by the authors or the original numbers pro-
vided in the paper. In all the two-dimensional baselines,
we implemented the baseline from scratch in the case when
code was not available (LayoutVAE) and use the author’s
own implementation when the code was available (Layout-
GAN, ObjGAN, sg2im). Since we train our model in all
cases, we ran a grid search over different hyperparame-
ters and report the best numbers in the paper. We found
that the GAN based methods were harder to converge and
had higher variation in the outcomes as compared to non-
adversarial approaches.

LayoutVAE. LayoutVAE [2] uses a similar representation
for layout and consists of two separate autoregressive VAE
models. Starting from a label set, which consists of cate-
gories of elements that will be present in a generated layout,
their CountVAE generates counts of each of the elements of
the label set. After that BoundingBoxVAE, generates the
location and size of each occurrence of the bounding box.
Note that the model assumes assumption of label set, and



Original Image Original Layout (NLL = 2.873) Left right flip (NLL = 3.203) Up down flip (NLL = 4.536)

Figure 2: We observe the impact of operations such as left right flip, and up down flip on log likelihood of the layout. We observe that
unlikely layouts (such as fog at the bottom of image have higher NLL than the layouts from data.

hence, while reporting we actually make the task easier for
LayoutVAE by providing label-sets of layouts in the valida-
tion dataset.

ObjGAN. ObjGAN [5] provides an object-attention based
GAN framework for text to image synthesis. An interme-
diate step in their image synthesis approach is to generate
a bounding box layout given a sentence using a BiLSTM
(trained independently). We adopt this step of the ObjGAN
framework to our problem setup. Instead of sentences we
provide categories of all layout elements as input to the Obj-
GAN and synthesize all the elements’ bounding boxes. This
in turn is similar to providing label set as input (similar to
the case of LayoutVAE).

sg2im. Image generation from scene graph [1] attempts to
generate complex scenes given scene graph of the image by
first generating a layout of the scene using graph convolu-
tions and then using the layout to generate complete scene
using GANs. The system is trained in an end-to-end fash-
ion. Since sg2im requires a scene graph input, following
the approach of [1], we create a scene graph from the input
and reproduce the input layout using the scene graph.

LayoutGAN. LayoutGAN [4] represents each layout with
a fixed number of bounding boxes. Starting with bound-
ing box coordinates sampled from a Gaussian distribution,
its GAN based framework assigns new coordinates to each
bounding box to resemble the layouts from given data. Op-
tionally, it uses non-maximum suppression (NMS) to re-
move duplicates. The problem setup in LayoutGAN is sim-
ilar to the proposed approach and they do not condition the
generated layout on anything. Note that the authors didn’t
provide the code for the case of bounding boxes (but only
for toy datasets used in the paper). In our implementation,
we weren’t able to reproduce similar results as the authors
reported in the paper for documents.

D. Visualizing attention
The self-attention based approach proposed enables us

to visualize which existing elements are being attending
to while the model is generating a new element. This is

demonstrated in Figure 1. We note that While predicting
an element, the model pays the most attention to previously
predicted bounding boxes (in red). For example, in the first
row, “snow” gets the highest attention score while predict-
ing “skis”. Similarly in the last column, “skis” get the high-
est attention while predicting “person”.

E. Layout Verification
Since in our method it is straightforward to compute like-

lihood of a layout, we can use our method to test if a given
layout is likely or not. Figure 2 shows the NLL given by our
model by doing left-right and top-down inversion of lay-
outs in COCO (following [4]). In case of COCO, if we flip
a layout left-right, we observe that layout remains likely,
however flipping the layout upside decreases the likelihood
(or increases the NLL of the layout). This is intuitive since
it is unlikely to see fog in the bottom of an image, while skis
on top of a person.

F. More semantics in learned category embed-
dings

Table 6 captures the most frequent bigrams and trigrams
(categories that co-occur) in real and synthesized layouts.
Table 5 shows word2vec [6] style analogies being captured
by embeddings learned by our model. Note that the model
was trained to generate layouts and we did not specify any
additional objective function for analogical reasoning task.

Table 5: Analogies. We demonstrate linguistic nuances be-
ing captured by our category embeddings by attempting to solve
word2vec [6] style analogies.

Analogy Nearest neighbors

snowboard:snow::surfboard:? waterdrops, sea, sand
car:road::train:? railroad, platform, gravel

sky-other:clouds::playingfield:? net, cage, wall-panel
mouse:keyboard::spoon:? knife, fork, oven

fruit:table::flower:? potted plant, mirror-stuff



Table 6: Bigrams and trigrams. We consider the most frequent pairs and triplets of (distinct) categories in real vs.generated layouts.

Real Ours Real Ours

other person other person person other person other person clothes
person other person clothes other person clothes person clothes tie
person clothes clothes tie person handbag person tree grass other
clothes person grass other person clothes person grass other person
chair person other dining table person chair person wall-concrete other person
person chair tree grass chair person chair grass other cow
sky-other tree wall-concrete other person other clothes tree other person
car person person other person backpack person person clothes person
person handbag sky-other tree person car person other dining table table
handbag person clothes person person skis person person other person

Figure 3: TSNE plot for dimension embedding (256 of them) and
category embedding for COCO.

G. Coordinate Embedding
Just like in Fig. ??, we project the embedding learned by

our model on COCO in a 2-d space using TSNE. In the ab-
sence of explicit constraints on the learned embedding, the
model learns to cluster together all the coordinate embed-
ding in a distinct space, in a ring-like manner. Fig. 3 shows
all the embeddings together in a single TSNE plot.

H. Nearest neighbors
To see if our model is memorizing the training dataset,

we compute nearest neighbors of generated layouts using
chamfer distance on top-left and bottom-right bounding box
coordinates of layout elements. Figure 4 shows the nearest

neighbors of some of the generated layouts from the training
dataset. We note that nearest neighbor search for layouts is
an active area of research.

I. More examples for Layout to Image
Layouts for natural scenes are cluttered and hard to qual-

itatively evaluate even for a trained user. Here we share
some more sample layouts generated from two methods
used in the paper. Figure 5 shows some extra sample layouts
and corresponding images generated using Layout2Im tool.
Existing layout to image methods don’t work as well as
free-form image generation methods but are arguably more
beneficial in downstream applications. We hope that im-
proving layout generation will aid the research community
to develop better scene generation tools both in terms of di-
versity and quality.

J. Dataset Statistics
In this section, we share statistics of different elements

and their categories in our dataset. In particular, we share
the total number of occurrences of an element in the trai
ning dataset (in descending order) and the total number of
distinct layouts an element was present in throughout the
training data. Tables 7, 7 show the statistics for Rico wire-
frames, and table 8 show the statistics for PubLayNet docu-
ments.



Generated NN1 NN2 NN3

Figure 4: Nearest neighbors from training data. Column 1 shows samples generated by model. Column 2, 3, 4 show the 3 closest neighbors
from training dataset. We use chamfer distance on bounding box coordinates to obtain the nearest neighbors from the dataset.



(a) LayoutVAE layouts (top) and images generated with Layout2Im (bottom)

(b) Our layouts (top) and images generated with Layout2Im (bottom)

Figure 5: Some sample layouts and corresponding images



Table 7: Category statistics for Rico

Category # occurrences # layouts

Text 387457 50322
Image 179956 38958
Icon 160817 43380
Text Button 118480 33908
List Item 72255 9620
Input 18514 8532
Card 12873 3775
Web View 10782 5808
Radio Button 4890 1258
Drawer 4138 4136
Checkbox 3734 1126
Advertisement 3695 3365

Category # occurrences # layouts

Modal 3248 3248
Pager Indicator 2041 1528
Slider 1619 954
On/Off Switch 1260 683
Button Bar 577 577
Toolbar 444 395
Number Stepper 369 147
Multi-Tab 284 275
Date Picker 230 217
Map View 186 94
Video 168 144
Bottom Navigation 75 27

Table 8: Category statistics for PubLayNet

Category # occurrences # layouts

text 2343356 334548
title 627125 255731
figure 109292 91968
table 102514 86460
list 80759 53049



References
[1] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image gener-

ation from scene graphs. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
1219–1228, 2018. 3

[2] Akash Abdu Jyothi, Thibaut Durand, Jiawei He, Leonid Sigal,
and Greg Mori. Layoutvae: Stochastic scene layout genera-
tion from a label set. arXiv preprint arXiv:1907.10719, 2019.
2

[3] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1

[4] Jianan Li, Jimei Yang, Aaron Hertzmann, Jianming Zhang,
and Tingfa Xu. Layoutgan: Generating graphic layouts with
wireframe discriminators. arXiv preprint arXiv:1901.06767,
2019. 3

[5] Wenbo Li, Pengchuan Zhang, Lei Zhang, Qiuyuan Huang, Xi-
aodong He, Siwei Lyu, and Jianfeng Gao. Object-driven text-
to-image synthesis via adversarial training. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 12174–12182, 2019. 3

[6] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781, 2013. 3

[7] Rafael Müller, Simon Kornblith, and Geoffrey E. Hinton.
When does label smoothing help? CoRR, abs/1906.02629,
2019. 2


