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1. Detailed Experimental Setup
1.1. Datasets

ModelNet40. We show in Fig. 1 examples of the mesh ren-
derings of ModelNet40 used in training our MVTN. Note
that the color of the object and the light direction are ran-
domized in training for augmentation but are fixed in testing
for stable performance.
ShapeNet Core55. In Fig. 2, we show examples of the
point cloud renderings of ShapeNet Core55 [4, 27] used
in training MVTN. Note how point cloud renderings offer
more information about content hidden from the camera
view-point, which can be useful for recognition. White color
is used in training and testing for all point cloud renderings.
For visualization purposes, colors are inverted in the main
paper examples (Fig. 4 in the main paper).
ScanObjectNN. ScanObjectNN [30] has three main vari-
ants: object only, object with background, and the
PB_T50_RS variant (hardest perturbed variant). Fig. 3 show
examples of multi-view renderings of different samples of
the dataset from its three variants. Note that adding the
background points to the rendering gives some clues to our
MVTN about the object, which explains why adding back-
ground improves the performance of MVTN in Table 2.

1.2. MVTN Details

MVTN Rendering. Point cloud rendering offers a light al-
ternative to mesh rendering in ShapeNet because its meshes
contain large numbers of faces that hinders training the
MVTN pipeline. Simplifying theses "high-poly" meshes
(similar to ModelNet40) results in corrupted shapes that lose
their main visual clues. Therefore, we use point cloud ren-
dering for ShapeNet, allowing to process all shapes with
equal memory requirements. Another benefit of point cloud
rendering is making it possible to train MVTN with a large
batch size on the same GPU (bath size of 30 on V100 GPU).
MVTN Architecture. We incorporate our MVTN into
MVCNN [28] and ViewGCN [32]. In our experiments, we
select PointNet [23] as the default point encoder of MVTN.
All MVTNs and their baseline multi-view networks use

ResNet18 [10] as backbone in our main experiments with
output feature size d = 1024. The azimuth angle maxi-
mum range (ubound) is 180◦

M for MVTN-circular and MVTN-
spherical, while it is 180◦ for MVTN-direct. On the other
hand, the elevation angle maximum range (ubound) is 90◦.
We use a 4-layer MLP for MVTN’s regression network G.
For MVTN-spherical/MVTN-spherical, the regression net-
work takes as input M azimuth angles, M elevation angles,
and the point features of shape S of size b = 40. The widths
of the MVTN networks are illustrated in Fig. 4.MVTN con-
catenates all of its inputs, and the MLP outputs the offsets to
the initial 2×M azimuth and elevation angles. The size of
the MVTN network (with b = 40) is 14M2+211M +3320
parameters, where M is the number of views. It is a shallow
network of only around 9K parameters when M = 12.
View-Points. In Fig. 5, we show the basic views configura-
tions for M views previously used in the literature: circular,
spherical, and random. MVTN’s learned views are shown
later in 3.1 Since ViewGCN uses view sampling as a core
operation, it requires the number of views to be at least 12,
and hence, our MVTN with ViewGCN follows accordingly.
Training MVTN. We use AdamW [21] for our MVTN net-
works with a learning rate of 0.001. For other training details
(e.g. training epochs and optimization), we follow the pre-
vious works [32, 28] for a fair comparison. The training of
MVTN with MVCNN is done in 100 epochs and a batch
size of 20, while the MVTN with ViewGCN is performed in
two stages as proposed in the official code of the paper [32].
The first stage is 50 epochs of training the backbone CNN on
the single view images, while the second stage is 35 epochs
on the multi-view network on the M views of the 3D object.
We use learning rates of 0.0003 for MVCNN and 0.001 for
ViewGCN, and a ResNet-18 [10] as the backbone CNN for
both baselines and our MVTN-based networks. A weight
decay of 0.01 is applied for both the multi-view network and
in the MVTN networks. Due to gradient instability from the
renderer, we introduce gradient clipping in the MVTN to
limit the `2 norm of gradient updates to 30 forG. The code is
available at https://github.com/ajhamdi/MVTN.

https://github.com/ajhamdi/MVTN


Figure 1. Training Data with Randomized Color and Lighting. We show examples of mesh renderings of ModelNet40 used in training
our MVTN. The color of the object and the light’s direction are randomized during training for augmentation purposes and fixed in testing
for stable performance. For this figure, eight circular views are shown for each 3D shape.



Figure 2. ShapeNet Core55. We show some examples of point cloud renderings of ShapeNet Core55 [4] used in training MVTN. Note how
point cloud renderings offer more information about content hidden from the camera view-point (e.g. car wheels from the occluded side),
which can be useful for recognition. For this figure, 12 spherical views are shown for each 3D shape.
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Figure 3. ScanObjectNN Variants. We show examples of point cloud renderings of different variants of the ScanObjectNN [30] point
cloud dataset used to train MVTN. The variants are: object only, object with background, and the hardest perturbed variant (with rotation
and translation). For this figure, six circular views are shown for each 3D shape.
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Figure 4. MVTN Network Architecture. We show a schematic and a code snippet for MVTN-spherical/MVTN-circular regression
architectures used, where b is the size of the point features extracted by the point encoder of MVTN and M is the number of views learned.
In most of our experiments, b = 40, while the output is the azimuth and elevation angles for all the M views used. The network is drawn
using [17]
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Figure 5. Views Configurations. We show some possible views configurations that can be used with a varying number of views. (a):
circular, (b): spherical, (c): random



2. Additional Results
2.1. Classification and Retrieval Benchmarks

We provide in Tables 1,2, and 3 comprehensive bench-
marks of 3D classifications and 3D shape retrieval methods
on ModelNet40 [34], ScanObjectNN [30], and ShapeNet
Core55 [4, 27]. These tables include methods that use points
as representations as well as other modalities like multi-view
and volumetric representations. Our reported results of four
runs are presented in each table as “max (avg ± std)”. Note
in Table 1 how our MVTN improves the previous state-of-
the-art in classification (ViewGCN [32]) when tested on
the same setup. Our implementations (highlighted using
∗) slightly differ from the reported results in their original
paper. This can be attributed to the specific differentiable
renderer of Pytorch3D [26] that we are using, which might
not have the same quality of the non-differentiable OpenGL
renderings [33] used in their setups.

2.2. Rotation Robustness

A common practice in the literature in 3D shape classifica-
tion is to test the robustness of models trained on the aligned
dataset by injecting perturbations during test time [20]. We
follow the same setup as [20] by introducing random rota-
tions during test time around the Y-axis (gravity-axis). We
also investigate the effect of varying rotation perturbations
on the accuracy of circular MVCNN when M = 6 and
M = 12. We note from Fig. 6 that using less views leads to
higher sensitivity to rotations in general. Furthermore, we
note that our MVTN helps in stabilizing the performance on
increasing thresholds of rotation perturbations.

2.3. Occlusion Robustness

To quantify the occlusion effect due to the viewing an-
gle of the 3D sensor in our setup of 3D classification, we
simulate realistic occlusion by cropping the object from
canonical directions. We train PointNet [23], DGCNN [31],
and MVTN on the ModelNet40 point cloud dataset. Then, at
test time, we crop a portion of the object (from 0% occlusion
ratio to 75%) along the ±X, ±Y, and ±Z directions indepen-
dently. Fig. 8 shows examples of this occlusion effect with
different occlusion ratios. We report the average test accu-
racy (on all the test set) of the six cropping directions for the
baselines and MVTN in Fig. 7. Note how MVTN achieves
high test accuracy even when large portions of the object are
cropped. Interestingly, MVTN outperforms PointNet [23]
by 13% in test accuracy when half of the object is occluded.
This result is significant, given that PointNet is well-known
for its robustness [23, 9].
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Figure 6. Robustness on a Varying Y-Rotation. We study the
effect of varying the maximum rotation perturbation on the classifi-
cation accuracies on ModelNet40. We compare the performance
of circular MVCNN [28] to our circular-MVTN when it equips
MVCNN when the number of views is 6 and 12. Note how MVTN
stabilizes the drop in performance for larger Y-rotation perturba-
tions, and the improvement is more significant for the smaller
number of views M .

0.0 0.2 0.4 0.6
Occlusion Ratio 

0

20

40

60

80

Te
st

 A
cc

ur
ac

y 
(%

)

Accuracy under Data Occlusion 
PointNet
DGCNN
MVTN1

MVTN2

Figure 7. Occlusion Robustness of 3D Methods. We plot test
accuracy vs. the Occlusion Ratio of the data to simulate the occlu-
sion robustness of different 3D methods: PointNet [23], DGCNN
[31], and MVTN. Our MVTN achieves close to 13% better than
PointNet when half of the object is occluded. MVTN1 refers to
MVTN with MVCNN as the multi-view network while MVTN2

refers to MVTN with View-GCN as the multi-view network.



Classification Accuracy
Method Data Type (Per-Class) (Overall)

SPH [15] Voxels 68.2 -
LFD [5] Voxels 75.5 -

3D ShapeNets [34] Voxels 77.3 -
VoxNet [22] Voxels 83.0 85.9

VRN [3] Voxels - 91.3
MVCNN-MS [24] Voxels - 91.4

FusionNet [11] Voxels+MV - 90.8
PointNet [23] Points 86.2 89.2

PointNet++ [25] Points - 91.9
KD-Network [16] Points 88.5 91.8

PointCNN [19] Points 88.1 91.8
DGCNN [31] Points 90.2 92.2
KPConv[29] Points - 92.9

PVNet[36] Points - 93.2
PTransformer[37] Points 90.6 93.7

MVCNN [28] 12 Views 90.1 90.1
GVCNN [6] 12 Views 90.7 93.1

ViewGCN [32] 20 Views 96.5 97.6

ViewGCN [32]∗ 12 views 90.7 (90.5 ± 0.2) 93.0 (92.8 ± 0.1)
ViewGCN [32]∗ 20 views 91.3 (91.0 ± 0.2) 93.3 (93.1 ± 0.2)

MVTN (ours)∗ 12 Views 92.0 (91.2 ± 0.6) 93.8 (93.4 ± 0.3)
MVTN (ours)∗ 20 Views 92.2 (91.8 ± 0.3) 93.5 (93.1 ± 0.5)

Table 1. 3D Shape Classification on ModelNet40. We compare MVTN against other methods in 3D classification on ModelNet40 [34]. ∗

indicates results from our rendering setup (differentiable pipeline), while other multi-view results are reported from pre-rendered views.
Bold denotes the best result in its setup. In brackets, we report the average and standard deviation of four runs

Classification Overall Accuracy
Method Object with Background Object Only PB_T50_RS (Hardest)

3DMFV [2] 68.2 73.8 63.0
PointNet [23] 73.3 79.2 68.0

SpiderCNN [35] 77.1 79.5 73.7
PointNet ++ [25] 82.3 84.3 77.9

PointCNN [19] 86.1 85.5 78.5
DGCNN [31] 82.8 86.2 78.1

SimpleView [8] - - 79.5
BGA-DGCNN [30] - - 79.7

BGA-PN++ [30] - - 80.2

ViewGCN ∗ 91.9 (91.12 ± 0.5) 90.4 (89.7 ± 0.5) 80.5 (80.2 ± 0.4)
MVTN (ours) 92.6 (92.5 ± 0.2) 92.3 (91.7 ± 0.7) 82.8 (81.8 ± 0.7)

Table 2. 3D Point Cloud Classification on ScanObjectNN. We compare the performance of MVTN in 3D point cloud classification on
three different variants of ScanObjectNN [30]. The variants include object with background, object only, and the hardest variant. ∗ indicates
results from our rendering setup (differentiable pipeline), and we report the average and standard deviation of four runs in brackets.



Shape Retrieval (mAP)
Method Data Type ModelNet40 ShapeNet Core

ZDFR [18] Voxels - 19.9
DLAN [7] Voxels - 66.3
SPH [15] Voxels 33.3 -
LFD [5] Voxels 40.9 -

3D ShapeNets [34] Voxels 49.2 -
PVNet[36] Points 89.5 -

MVCNN [28] 12 Views 80.2 73.5
GIFT [1] 20 Views - 64.0

MVFusionNet [12] 12 Views - 62.2
ReVGG [27] 20 Views - 74.9
RotNet [14] 20 Views - 77.2

ViewGCN [32] 20 Views - 78.4
MLVCNN [13] 24 Views 92.2 -

MVTN (ours) 12 Views 92.9 (92.4 ± 0.6) 82.9 (82.4 ± 0.6)
Table 3. 3D Shape Retrieval. We benchmark the shape retrieval capability of MVTN on ModelNet40 [34] and ShapeNet Core55 [4, 27].
MVTN achieves the best retrieval performance among recent state-of-the-art methods on both datasets with only 12 views. In brackets, we
report the average and standard deviation of four runs.
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Figure 8. Occlusion of 3D Objects: We simulate realistic occlusion scenarios in 3D point clouds by cropping a percentage of the object
along canonical directions. Here, we show an object occluded with different ratios and from different directions.



3. Analysis and Insights

3.1. Ablation Study

This section introduces a comprehensive ablation study
on the different components of MVTN, and their effect on
test accuracy on the standard ModelNet40 [34].
MVTN Variants. We study the effect of the number of
views M on the performance of different MVTN variants
(direct, circular, spherical). The experiments are repeated
four times, and the average test accuracies with confidence
intervals are shown in Fig. 9. The plots show how learned
MVTN-spherical achieves consistently superior performance
across a different number of views. Also, note that MVTN-
direct suffers from over-fitting when the number of views
is larger than four (i.e. it gets perfect training accuracy but
deteriorates in test accuracy). This can be explained by
observing that the predicted view-points tend to be similar
to each other for MVTN-direct when the number of views is
large. The similarity in views leads the multi-view network
to memorize the training but to suffer in testing.
Backbone. In the main manuscript (Table 6), we study
MVTN with ViewGCN as the multi-view network. Here,
we study the backbone effect on MVTN with MVCNN as
the multi-view network and report all results in Table 6. The
study includes the backbone choice, and the point encoder
choice. Note that including more sophisticated backbones
does not improve the accuracy
Late Fusion. In the MVTN pipeline, we use a point encoder
and a multi-view network. One can argue that an easy way to
combine them would be to fuse them later in the architecture.
For example, PointNet [23] and MVCNN [28] can be max
pooled together at the last layers and trained jointly. We
train such a setup and compare it to MVTN. We observe that
MVTN achieves 91.8% compared to 88.4% by late fusion.
More results are reported in Table 6
Light Direction Effect. We study the effect of light’s direc-
tion on the performance of multi-view networks. We note
that picking a random light in training helps the network
generalize to the test set. Please see Fig. 10 for the results
on circular MVTN with MVCNN when comparing this strat-
egy to fixed light from the top or from camera (relative).
Note that we use relative light in test time to stabilize the
performance.
Effect of Object Color. Our main experiments used ran-
dom colors for the objects during training and fixed them to
white in testing. We tried different coloring approaches, like
using a fixed color during training and test. The results are
illustrated in Table 4.
Image size and number of points. We study the effect
of rendered image size and the number of points sampled
in a 4-view MVTN trained on ModelNet40 and report the
overall accuracies (averaged over four runs) as follows. For
image sizes 160×160, 224×224, and 280×280, the results
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Figure 9. Variants of MVTN. We plot test accuracy vs. the number
of views used in training different variants of our MVTN. Note
how MVTN-spherical is generally more stable in achieving better
performance on ModelNet40. 95% confidence interval is also
plotted on each setup (repeated four times).

are 91.0%, 91.6%, and 91.9% respectively. For the number
of randomly sampled points P = 512, 1024, and 2048, the
results are 91.2% 91.6% , and 91.6% respectively.
Learning Distance to the Object. One possible ablation to
the MVTN is to learn the distance to the object. This feature
should allow the cameras to get closer to details that might be
important to the classifier to understand the object properly.
However, we observe that MVTN generally performs worse
or does not improve with this setup, and hence, we refrain
from learning it. In all of our main experiments, we fixed
the distance to 2.2 units, which is a good middle ground
providing best accuracy. Please see Fig. 11 for the effect of
picking a fixed distance in training spherical ViewGCN.

3.2. Time and Memory of MVTN

We compare the time and memory requirements of dif-
ferent parts of our pipeline to assess the MVTN module’s
contribution. We record FLOPs and MACs to count each
module’s operations and record the time of a forward pass for
a single input sample and the number of parameters for each
module. We find in Table 5 that MVTN contributes negligi-
bly to the time and memory requirements of the multi-view
networks and the 3D point encoders.

3.3. Transferability of MVTN View-Points

We hypothesize that the views learned by MVTN are
transferable across multi-view classifiers. Looking at results
in Fig. 13, 14, we believe MVTN picks the best views based
on the actual shape and is less influenced by the multi-view
network. This means that MVTN learns views that are more
representative of the object, making it easier for any multi-
view network to recognize it. As such, we ask the following:
can we transfer the views MVTN learns under one setting to
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Figure 10. Light Direction Effect. We study the effect of light
direction in the performance of the MVTN-circular. We note that
randomizing the light direction in training reduce overfitting for
larger number of views and leads to better generalization.

Object Color
Method White Random

Fixed views 92.8 ± 0.1 92.8 ± 0.1
MVTN (learned) 93.3 ± 0.1 93.4 ± 0.1

Table 4. Effect of Color Selection. We ablate selecting the color
of the object in training our MVTN and when views are fixed
in the spherical configuration. Fixed white color is compared to
random colors in training. Note how randomizing the color helps
in improving the test accuracy on ModelNet40 a little bit.
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Figure 11. Effect of Distance to 3D Object. We study the effect
of changing the distance on training a spherical ViewGCN. We
show that the distance of 2.2 units to the center is in between far
and close it and gives the best accuracy.

a different multi-view network?
To test our hypothesis, we take a 12-view MVTN-

spherical module trained with MVCNN as a multi-view
network and transfer the predicted views to a ViewGCN
multi-view network. In this case, we freeze the MVTN

Network FLOPs MACs Params. # Time

PointNet 1.78 G 0.89 G 3.49 M 3.34 ms
DGCNN 10.42 G 5.21 G 0.95 M 16.35 ms
MVCNN 43.72 G 21.86 G 11.20 M 39.89 ms
ViewGCN 44.19 G 22.09 G 23.56 M 26.06 ms

MVTN∗ 18.52 K 9.26 K 9.09 K 0.9 ms
MVTN◦ 1.78 G 0.89 G 4.24 M 3.50 ms

Table 5. Time and Memory Requirements. We assess the contri-
bution of the MVTN module to time and memory requirements in
the multi-view pipeline. MVTN∗ refers to MVTN’s regressor ex-
cluding the point encoder, while MVTN◦ refers to the full MVTN
module including PointNet as a point encoder.

module and only train ViewGCN on these learned but fixed
views. ViewGCN with transferred MVTN views reaches
93.1% accuracy in classification. It corresponds to a boost
of 0.7% from the 92.4% of the original ViewGCN. Although
this result is lower than fully trained MVTN(−0.3%), we
observe a decent transferability between both multi-view
architectures.

3.4. MVTN Predicted Views

We visualize the distribution of predicted views by
MVTN for specific classes in Fig. 12. This is done to ensure
that MVTN is learning per-instance views and regressing the
same views for the entire class (collapse scenario). We can
see that the MVTN distribution of the views varies from one
class to another, and the views themselves on the same class
have some variance from one instance to another. We also
show specific examples for predicted views in Fig. 13, 14.
Here, we show both the predicted camera view-points and
the renderings from these cameras. Note how MVTN shifts
every view to better show the discriminative details about the
3D object. To test that these views are per-instance, we aver-
age all the views predicted by our 4-view MVTN for every
class and test the trained MVCNN on these fixed per-class
views. In this setup, MVTN achieves 90.6% on ModelNet40,
as compared to 91.0% for the per-instance views and 89%
for the fixed views.

3.5. Shape Retrieval Examples

We show qualitative examples of our retrieval results
using the MVTN-spherical with ViewGCN in Fig. 15. Note
that the top ten retrieved objects for all these queries are
positive (from the same classes of the queries).



Views Backbone Point Encoder Setup Fusion Results
number ResNet18 ResNet50 PointNet[23] DGCNN[31] circular spherical late MVTN accuracy

6 X - X - X - X - 90.48 %
6 X - X - X - - X 91.13 %
6 X - X - - X X - 89.51 %
6 X - X - - X - X 91.94 %
6 X - - X X - X - 87.80 %
6 X - - X X - - X 91.49 %
6 X - - X - X X - 89.82 %
6 X - - X - X - X 91.29 %
6 - X X - X - X - 89.10 %
6 - X X - X - - X 90.40 %
6 - X X - - X X - 89.22 %
6 - X X - - X - X 90.76 %
6 - X - X X - X - 89.99 %
6 - X - X X - - X 89.91 %
6 - X - X - X X - 89.95 %
6 - X - X - X - X 90.43 %

12 X - X - X - X - 87.35%
12 X - X - X - - X 90.68%
12 X - X - - X X - 88.41%
12 X - X - - X - X 91.82
12 X - - X X - X - 90.24%
12 X - - X X - - X 90.28%
12 X - - X - X X - 89.83%
12 X - - X - X - X 91.98%
12 - X X - X - X - 86.87%
12 - X X - X - - X 88.86%
12 - X X - - X X - 87.16%
12 - X X - - X - X 88.41%
12 - X - X X - X - 90.15%
12 - X - X X - - X 88.37%
12 - X - X - X X - 90.48%
12 - X - X - X - X 89.63%

Table 6. Ablation Study. We study the effect of ablating different components of MVTN on the test accuracy on ModelNet40. Namely, we
observe that using more complex backbone CNNs (like ResNet50 [10]) or a more complex features extractor (like DGCNN [31]) does not
increase the performance significantly compared to ResNet18 and PointNet [23] respectively. Furthermore, combining the shape features
extractor with the MVCNN [28] in late fusion does not work as well as MVTN with the same architectures. All the reported results are
using MVCNN [28] as multi-view network.
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Figure 12. Visualizing MVTN learned Views. We visualize
the distribution of azimuth and elevation angles predicted by the
MVTN for three different classes. Note that MVTN learns inter-
class variations (between different classes) and intra-class variations
(on the same class).
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Figure 13. Qualitative Examples for MVTN predicted views (I): The view setups commonly followed in the multi-view literature are
circular [28] or spherical [32, 14]. The red dot is the center of the object. MVTN-circular/MVTN-spherical are trained to predict the views
as offsets to these common configurations. Note that MVTN adjust the original views to make the 3D object better represented by the
multi-view images.
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Figure 14. Qualitative Examples for MVTN predicted views (II): The view setups commonly followed in the multi-view literature are
circular [28] or spherical [32, 14]. The red dot is the center of the object. MVTN-circular/MVTN-spherical are trained to predict the views
as offsets to these common configurations. Note that MVTN adjust the original views to make the 3D object better represented by the
multi-view images.



Figure 15. Qualitative Examples for Object Retrieval: (left): we show some query objects from the test set. (right): we show top ten
retrieved objects by our MVTN from the training set.
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