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1. Proof of Proposition 1

Proposition 1. When ψ = 0, a Proj-GAN reduces to K
unconditional GANs, each of them minimizes the Jensen-
Shannon divergence between PX|y and QX|y with mixing
ratio { P (y)

P (y)+Q(y) ,
Q(y)

P (y)+Q(y)}. Its value function can be
written as,

EPY

{
EPX|Y logD(x|y) + Qy

Py
EQX|Y log (1−D(x|y))

}
.

Proof. When ψ(·) is zero, D̃(x, y) = vT
yϕ(x). Recall the

logit of an unconditional GAN is D̃(x) = vT
Xϕ(x) (with

bias b = 0). It immediately follows that matrix V is a col-
lection of K vectors vy , one for each class. Simply rear-
ranging the cGAN objective, we get

EP (y)

{
EP (x|y) logD(x|y) + 1

r(y)
EQ(x|y) log (1−D(x|y))

}
,

(1)

with r(y) = P (y)
Q(y) . This can be viewed as a weighted sum

of K GAN objectives with binary cross-entropy loss. Each
of them minimizes the Jensen-Shannon divergence between
PX|y and QX|y with weights { P (y)

P (y)+Q(y) ,
Q(y)

P (y)+Q(y)}.

2. Proof of Proposition 2

Lemma 1. For any classifier C, the objective
Ex,y∼PXY

logC(x, y) ≤ −HP (Y |X), and the maxi-
mizer C∗ is obtained if and only if Qc(y|x) = P (y|x),
where Qc is the conditional distribution induced by C.

Proof. It follows immediately with the observation,

LCE =Ex,y∼PXY
logC(x, y)

=Ex∼PX
Ey∼PY |X logP (y|x)Q

c(y|x)
P (y|x)

=Ex∼PX
Ey∼PY |X logP (y|x)−

Ex∼PX
KL(PY |X∥Qc

Y |X)

≤−HP (Y |X). (2)

The equality is achieved if and only if Qc
Y |X = PY |X .

Proposition 2. Given a generatorG, if cross entropy losses
Lp
mi and Lq

mi are minimized optimally, then the difference
of two losses evaluated at fake data equals the reverse KL-
divergence between PY |X and QY |X ,

Lp
mi(x

−)− Lq
mi(x

−) = EQX
KL(QY |X∥PY |X). (3)

Proof. Applying Lemma 1 to classifier Cp and Cq respec-
tively, we have

Cp∗ = P (y|x) and Cq∗ = Q(y|x). (4)

Then,

Lp∗
mi(x

−)− Lq∗
mi(x

−)

=Ez∼PZ ,y∼PY
logQcq∗(G(z, y), y)− logQcp∗(G(z, y), y)

=Ez∼PZ ,y∼PY
log

Cq∗(G(z, y), y)

Cp∗(G(z, y), y)

=EQX
log

Q(y|x)
P (y|x)

=EQX
KL(QY |X∥PY |X).



3. Proof of Theorem 1
Theorem 1. Denoting PXY and QXY as the data dis-
tribution and the distribution induced by G, their Jensen-
Shannon divergence is upper bounded by the following,

JSD(PXY , QXY ) ≤ (5)

2c1
√
2JSD(PX , QX) + c2

√
2KL(PY |X∥Qp

Y |X)+

c2
√
2KL(QY |X∥Qq

Y |X) + c2
√
2KL(Qq

Y |X∥Qp
Y |X).

Proof. According to the triangle inequality of the total vari-
ation distance (TV, denoted as δ), we have

δ(PXY , QXY )

≤ δ(PXY , PY |XQX)︸ ︷︷ ︸
I⃝

+ δ(PY |XQX , QXY )︸ ︷︷ ︸
II⃝

. (6)

We can relax term I⃝ using the definition of TV,

δ(PXY , PY |XQX) = δ(PY |XPX , PY |XQX)

=
1

2

∫
{|PY |X(y|x)PX(x)− PY |X(y|x)QX(x)|µ(x, y)}

(a)

≤ 1

2

∫
|PY |X(y|x)|µ(x, y)

∫
|PX(x)−QX(x)|µ(x, y)

≤c1δ(PX , QX), (7)

where µ is a (σ-finite) measure, c1 is an upper bound of∫
|PY |X(y|x)|µ(x, y). (a) follows from the Hölder inequal-

ity. Similarly, for II⃝ we have,

δ(PY |XQX , QXY ) =δ(PY |XQX , QY |XQX)

≤c2δ(PY |X , QY |X), (8)

and c2 is an upper bound of
∫
|QX(x)|µ(x).

Then, using the triangle inequality of TV again,

δ(PY |X , QY |X) (9)
≤δ(PY |X , Q

p
Y |X) + δ(Qp

Y |X , Q
q
Y |X) + δ(Qq

Y |X , QY |X).

Combining Equation 6, 7, 8 and 9,

δ(PXY , QXY )

≤c1δ(PX , QX) + c2δ(PY |X , QY |X)

≤ c1δ(PX , QX)︸ ︷︷ ︸
III⃝

+ c2δ(Q
p
Y |X , Q

q
Y |X)︸ ︷︷ ︸

IV⃝

+

c2δ(PY |X , Q
p
Y |X) + c2δ(Q

q
Y |X , QY |X)︸ ︷︷ ︸

V⃝

. (10)

From above, we see that III⃝ is enforced by the unconditional
GAN, IV⃝ is minimized by the f -divergence term, and V⃝ is
bounded by Lp

mi and Lq
mi.

Finally, using to Pinsker inequality [8] δ(P,Q) ≤√
1
2KL(P∥Q), and Lemma 3 in [7] 1

2δ
2(P,Q) ≤

JSD(P,Q) ≤ 2δ(P,Q), we have,

JSD(PXY , QXY ) ≤ (11)

2c1
√

2JSD(PX , QX) + c2
√

2KL(Qq
Y |X∥Qp

Y |X)+

c2
√

2KL(PY |X∥Qp
Y |X) + c2

√
2KL(QY |X∥Qq

Y |X).

4. Weighted Dual Projection GAN
P2GAN-ap. The full objectives of P2GAN with amortised
weights are as follows,

LP2ap
D =Ex,y∼PXY

(1− λ(x))A(−D̃(x, y))+ (12)

Ez∼PZ ,y∼QY
(1− λ(G(z, y)))A(D̃(G(z, y), y))−

Ex,y∼PXY
λ(x)T p(x, y)−

Ez∼PZ ,y∼QY
λ(G(z, y))T q(G(z, y), y) and

LP2ap
G =Ez∼PZ ,y∼QY

(1− λ(G(z, y)))A(−D̃(G(z, y), y)).

Here T p and T q has the same definition as in f -cGAN.
Alternative weighing strategies. An alternative design of
a weighted P2GAN is to fix the weight of LD to 1,

LP2sp-alt
D = LD + λ · (Lp

mi + Lq
mi)−

1

2
log λ. (13)

Here, λ ∈ [0,∞) and is initialized as 1. We can define
similar alternatives for P2GAN-s, P2GAN-a and P2GAN-
ap. The key difference is that, weighing (1 − λ) · LD and
λ · Lmi explicitly balances data matching and label match-
ing, while the alternative way balances Lmi and the penalty
term. Without penalty, λ in all alternative variants will van-
ish since this minimizes the total loss, however, the decreas-
ing rate is determined by loss Lmi adaptively. An extended
comparison is listed in Table 1. In practice, we find the dif-
ferences are not significant.

5. f -divergence
Here we consider several f -divergence loss functions [4]

and list them in Table 2. Results on CIFAR100IB and VG-
GFace200 is given in Figure 1. Different from the results on
VGGFace200, only reverse-KL and GAN losses are stable
on CIFAR100IB.

6. Implementation
The 1D Mixture of Gaussian experiments are imple-

mented based on the official TAC-GAN repo*. Code for

*https://github.com/batmanlab/
twin-auxiliary-classifiers-gan



Table 1: FID scores of alternative weighting strategies for
P2GAN-w. All models are trained for 62000 iterations on
CIFAR100 and 50000 iterations on VGGFace200.

CIFAR100 VGGFace200
P2GAN-s 9.03 20.59
P2GAN-sp 9.51 20.18
P2GAN-a 10.13 20.26
P2GAN-ap 9.82 18.99
P2GAN-s-alt 9.49 20.21
P2GAN-sp-alt 9.85 20.82
P2GAN-a-alt 9.98 23.25
P2GAN-ap-alt 9.72 21.57
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Figure 1: (a-b) IS and FID on CIFAR100IB. (c-d) IS and
FID on VGGFace200. Different curves correspond to dif-
ferent choices of f -divergence, CE loss is used for both P
and Q.
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Figure 2: IS and FID score over iterations on ImageNet at
at 128× 128 resolution.
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Figure 3: IS and FID score over iterations on VGGFace200.

CIFAR100, VGGFace2, and ImageNet at resolution 64×64
are written based on the BigGAN-PyTorch repo†. Code for
CIFAR10 and ImageNet at resolution 128 × 128 is imple-
mented based on StudioGAN [2] repo‡.

7. 1D MoG Synthetic Data

Experimental setup. We follow the same protocol as in
TAC-GAN paper [1]. The standard deviations σ0 = 1,
σ1 = 2, and σ2 = 3 are fixed, and distance dm is set to value
1, 2, . . . , 5 and all models are trained 100 times for each ex-
perimental setting. The code for synthetic data, network
architectures, and MMD evaluation metrics are borrowed
from the official TAC-GAN repo. However, the training
code for hinge loss is not provided, thus we implemented
our hinge loss version based on the BigGAN-PyTorch repo.
More results. The average MMD values across 100 runs
are reported in Table 4 and Figure 4. Samples of gener-
ated 1D MoG are visualized in Figure 7. We observe that
P2GAN performs the best with BCE loss, demonstrating
its ability to generate accurate distributional data. Even
with hinge loss, P2GAN still performs relatively well, and
achieves the highest overall ranking.

8. CIFAR

Experimental setup. To construct the CIFAR100IB
dataset, we randomly sample Nc images from class c where
Nc = round(500 − 4 × c). For CIFAR100 experiments,
we fix batch size as 100, and the number of D steps per G
step as 4. All baselines are trained for 500 epochs or 62k
iterations. These hyper-parameters are kept the same as de-
scribed in TAC-GAN paper (also in their provided launch
script).
More results. Generated samples of CIFAR10 and CI-
FAR100 are shown in Figure 8 and 10, respectively.

†https://github.com/ajbrock/BigGAN-PyTorch
‡https://github.com/POSTECH-CVLab/

PyTorch-StudioGAN



Table 2: List of f -divergence and their corresponding generator function f(·)

Name f(u) f ◦ exp (u)
Reverse KL − log u −u
Kullback-leibler u log u ueu

Pearson χ2 (u− 1)2 (eu − 1)2

Squared Hellinger (
√
u− 1)2 (eu/2 − 1)2

Jensen-Shannon −(u+ 1) log 1+u
2 + u log u −(eu + 1) log 1+eu

2 + ueu

GAN u log u− (u+ 1) log (u+ 1) ueu − (eu + 1) log (eu + 1)
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Figure 4: The Maximum Mean Discrepancy (MMD) metric. Proposed methods show low MMD with low variance across
different runs.

Table 3: Inception Scores (IS), Fréchet Inception Distances
(FID) and the maximum intra FID (max-FID), evaluated on
VGGFace200 dataset.

IS ↑ FID ↓ max-FID ↓
Proj-GAN 50.93 ± 0.86 61.43 239.61
TAC-GAN* 40.78 ± 0.57 96.06 478.10
Naı̈ve 104.52 ± 1.95 32.39 196.99
f -cGAN 109.94 ± 1.15 29.54 215.50
P2GAN 148.48 ± 2.87 20.70 209.86
P2GAN-w 171.31 ± 3.44 15.70 127.43

9. ImageNet

Experimental setup. Due to limited computation resource,
experiments on ImageNet related to model comparison and
analysis are conducted at resolution 64× 64. We follow the
experimental setup in TAC-GAN paper but reduce the im-
age size and model size. We use batch size of 2048 (batch
size 256 accumulated 8 times) and the number of D steps
per G step is 1. Channel multipliers for both G and D are

32. The resolution of self-attention layer is set to 32. Mod-
els are trained with 80k iterations.

For experiments at 128 × 128 resolution, we follow
the configurations of BigGAN256§ provided in the Studio-
GAN [2] repo. We use batch size of 256 and the number of
D steps per G step is 2. Channel multipliers for both G and
D are 96. The resolution of self-attention layer is set to 64.
We train a P2GAN-w model with 200k iterations.
More results. Samples of 50 classes are shown in Figure 11
and 12. Although P2GAN (without adaptive weights)
achieves the highest IS, it shows mode collapse on certain
classes (for example the “flowers” in row 45). For the same
flower class, Proj-GAN can still generate diverse samples.
TAC-GAN, f -cGAN and P2GAN all exhibit mode collapse
on certain classes. While the proposed weighting strategy is
able to avoid mode collapse and still achieve competitively
high IS and low FID.

Results of 128 × 128 resolution ImageNet experiments

§https://github.com/POSTECH-CVLab/
PyTorch-StudioGAN/blob/master/src/configs/
ILSVRC2012/BigGAN256.json



Table 4: The Maximum Mean Discrepancy (MMD) metric on 1D Mixture of Gaussian (MoG) synthetic dataset. Classes
‘0’, ‘1’, ‘2’ stand for mode 0, 1, 2, and ‘M’ stands for marginal. The upper half lists results of BCE loss and the lower half
lists results when adopting hinge loss. We run each experiment 100 times and report the average MMD over the top 90%
performing runs. Standard deviations are omitted due to space limit. Entries with two lowest values are marked in boldface.

BCE / Hinge dm = 1 dm = 2 dm = 3 dm = 4 dm = 5

0 1 2 M 0 1 2 M 0 1 2 M 0 1 2 M 0 1 2 M
Proj-GAN 0.040 0.106 0.273 0.074 0.044 0.327 1.246 0.248 0.060 0.635 1.628 0.325 0.073 0.932 3.379 0.527 0.166 3.298 3.903 1.126
TAC-GAN* 0.015 0.033 0.100 0.027 0.021 0.124 0.529 0.067 0.020 0.272 0.803 0.149 0.027 0.412 1.969 0.106 0.035 1.139 2.160 0.156
f -cGAN 0.018 0.042 0.170 0.031 0.019 0.090 0.383 0.047 0.030 0.193 0.635 0.087 0.024 0.575 2.170 0.276 0.037 0.857 3.328 0.287
P2GAN 0.009 0.028 0.151 0.026 0.014 0.080 0.345 0.046 0.016 0.160 0.639 0.084 0.028 0.237 1.530 0.056 0.030 0.655 2.725 0.261
Proj-GAN 0.112 0.267 0.879 0.178 0.167 0.725 2.373 0.492 0.172 1.455 6.385 0.969 0.249 4.904 15.496 3.368 0.386 11.002 29.382 7.407
TAC-GAN* 0.190 0.474 1.376 0.416 0.304 1.635 4.213 1.060 0.357 3.504 12.817 2.531 0.314 6.949 29.822 6.425 0.264 13.905 54.134 11.125
f -cGAN 0.164 0.429 1.484 0.441 0.192 1.718 5.084 1.506 0.174 3.480 15.491 3.675 0.138 3.629 19.597 3.862 0.173 4.592 28.753 4.315
P2GAN 0.118 0.584 1.696 0.490 0.120 0.843 4.486 1.051 0.152 2.951 12.854 2.852 0.192 6.005 22.003 5.066 0.295 9.920 36.080 8.145

(a) Proj-GAN (b) P2GAN-w (c) P2GAN

Figure 5: Precision & recall on ImageNet (128 resolution).

are reported in Figure 2. The IS and FID curves over train-
ing iterations clearly shows its advantage in terms of fast
convergence. Precision-recall [5] curves are given in Fig-
ure 5. Some randomly generated samples of P2GAN-w dur-
ing training are shown in Figure 9.

10. VGGFace2

Experimental setup. We follow the same protocol as in
TAC-GAN paper, and set batch size to 256 and the number
of D steps per G step to 1. Images are resized to resolution
of 64×64. The resolution of self-attention layer is set to 32.
Channel multipliers for both G and D are 32. All baselines
are trained with 100k iterations.

As for evaluation, we tried our best effort to match the
calculated FID and IS with the reported values in TAC-
GAN [1]. However, these values can be affected by many
factors such as the selected subset of identities and the
checkpoint of Inception Net [6] used for evaluation. We first
sample a subset of 2000 identities and finetune an Inception
model using Adam optimizer [3]. We use the checkpoinit
at 20000 iteration to monitor the training of GAN models.
Then we train a TAC-GAN model¶ and select the best model

¶Here the model is chosen to be its actual implementation, which is
equivalent to f -cGAN with reverse-KL and cross-entropy loss.

with the lowest FID. Finally, we use the selected TAC-GAN
model to examine which Inception Net checkpoint yields
the best match. The final FID score is 29.54 which is very
close to the reported 29.12. The identities of subsets VG-
GFace200, VGGFace500 and VGGFace2000 are given in
Supplemental Materials.
More results. As a complementary to the t-SNE visual-
ization of image embeddings provided in the main text, we
visualize the samples and list the corresponding FID values
in Figure 6. We see that Proj-GAN, TAC-GAN, f -cGAN
and P2GAN all show mode collapse on identity 0 (the first
row) while P2GAN-w still generates diverse samples on the
given class. Additional IS and FID values are reported in
Table 3.

The training curves of different baselines on VG-
GFace200 are plotted in Figure 3. We see that Proj-GAN,
over-parameterzation baseline (λ ≡ 0), DM-GAN (ψ ≡ 0)
and the naı̈ve baseline all fail on VGGFace200. Samples
of 50 identities from VGGFace500 are shown in Figure 13
and 14.
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Figure 6: Samples and FID scores of VGGFace200, evaluated at iteration 2000, 20000, and 50000. Their identity numbers
are 0, 1, and 2, respectively. At iteration 50000, all methods except for P2GAN-w exhibit mode collapse on identity 0.
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(c) distance dm = 3
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(d) distance dm = 4
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Figure 7: Change distance dm between the means of adjacent 1-D Gaussian components. For each sub-figure, the first row
adopts binary cross entropy loss and the second row adopts hinge loss.

and Sewoong Oh. Robustness of conditional gans to noisy
labels. arXiv preprint arXiv:1811.03205, 2018. 2

[8] Alexandre B Tsybakov. Introduction to nonparametric esti-
mation. Springer Science & Business Media, 2008. 2



(a) P2GAN (b) P2GAN-w

Figure 8: 10 classes of CIFAR10 generated samples at 32× 32 resolution.

Figure 9: P2GAN-w generated samples on ImageNet at 128× 128 resolution.



(a) P2GAN

(b) P2GAN-w

Figure 10: 100 classes of CIFAR100 generated samples at 32× 32 resolution.



(a) Proj-GAN (b) TAC-GAN* (c) f -cGAN

Figure 11: 50 classes of ImageNet1000 generated samples at 64× 64 resolution.



(a) P2GAN (b) P2GAN-a (c) P2GAN-ap

Figure 12: 50 classes of ImageNet1000 generated samples at 64× 64 resolution.



(a) Proj-GAN (b) TAC-GAN* (c) f -cGAN

Figure 13: 50 classes of VGGFace500 generated samples at 64× 64 resolution.



(a) P2GAN (b) P2GAN-a (c) P2GAN-ap

Figure 14: 50 classes of VGGFace500 generated samples at 64× 64 resolution.


