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6. Additional Results of EvIntSR-Net

6.1. Results on Image Superresolution

In addition to Fig. 4 and Fig. 5 of the main paper, we pro-

vide more comparisons on synthetic and real data between

the proposed EvIntSR-Net and other state-of-the-art meth-

ods, including E2SRI [1], eSL-Net [6], EV [5]+SISR [3],

and APS+MISR [2]. Fig. 7 ∼ Fig. 10 show 2× and 4× SR

results on synthetic data. Fig. 11 compares our SR results

with those from eSL-Net [6] on real data.

6.2. Highframerate Video Generation

High-frame-rate (HFR) videos with super-resolved

frames are shown in the supplementary video1. We first re-

construct multiple latent frames, then put each latent frame

on the central position, which is viewed as the target frame

to super-resolve. We interpolate continuous frames with

frame-rate 8 times higher than the original APS frames

(e.g., 240 FPS videos from 30 FPS videos). In supplemen-

tary video, we compare our HFR videos with those gen-

erated from eSL-Net [6] on both simulated data and real-

captured data. Results show that our reconstruction videos

look smoother and reserve more details than eSL-Net [6].

7. Ablation Study on Loss Functions

We ablate different loss functions from the complete

model and evaluate them quantitatively in Table 3. The

comparing results show that using the combination of L2

loss and perceptual loss helps the network to perform better

in reconstructing SR images.

1 https://youtu.be/3Uc1MMiYiO4

Table 3: Ablation study on loss functions. “Perc. loss”

means perceptual loss in this table.

PSNR↑ SSIM↑ LPIPS↓

L2 loss only 23.03 0.767 0.170

Perc. loss only 22.65 0.740 0.132

L1 loss + perc. loss 22.35 0.764 0.140

L2 loss + perc. loss (Ours) 23.12 0.776 0.130
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Figure 7: Visual quality comparison of 2× SR on synthetic dataset between EvIntSR-Net and other state-of-the-art super-

resolution methods, including both event-based approaches and image-based methods. The APS frames (first column) and

event stacks (third column) are upsampled with bicubic interpolation to the corresponding scale for reference.
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Figure 8: Visual quality comparison of 2× SR on synthetic dataset between EvIntSR-Net and other state-of-the-art super-

resolution methods.
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Figure 9: Visual quality comparison of 4× SR on synthetic dataset between EvIntSR-Net and other state-of-the-art super-

resolution methods.
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Figure 10: Visual quality comparison of 4× SR on synthetic dataset between EvIntSR-Net and other state-of-the-art super-

resolution methods.



Bicubic

Ours

eSL-Net

Bicubic

Ours

eSL-Net

Figure 11: 4× SR visual quality comparison between EvIntSR-Net and eSL-Net [6] on real samples from DAVIS346 captured

by us (top 2 cases) and public dataset [4] (bottom 2 cases).


