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This supplementary document is organized as
follows:

- Section A introduces A.1 GGE for Sig-
moid+BCE loss (Section 4.1); A.2 GGE for Soft-
max+CE loss (Section 5.4); A.3 algorithm for
GGE-iter and GGE-tog (Section 4.1).

- Section B provides more detailed settings for
CGR, CGW, and CGD (Section 5.1).

- Section C provides C.1 implementation details
for the base model; C.2 and ablations for ensemble
strategy, SUM-DQ and LMH+RUBi (Section 5.3).

- Section D provides D.1 ablation studies for
base model S-MRL and BAN (Section 5.3); D.2
comparison between Self-Ensemble fashion GGE
and RUBi; D.3 additional experimental results
(Section 3.2 and 5.1), including Accuracy on VQA
v2 and CGR/CGD for all implemented methods.

- Section E provides more quantitative examples
and failure cases from GGE-DQ (Section 5.4).

A. Implementation Details for GGE
A.1. Sigmoid+BCE

For classification problem with BCE loss, the
negative gradient is shown in Eq. 7 in the main pa-
per

−∇L(Hm,i) = 2ym,iσ (−2ym,iHm,i) . (1)

If ym,i = 0, the gradient will always be 0. If
the label ym,i = 1, we plot the change of negative
gradient versus predictionHm,i.

As shown in Figure 1, the gradient will continu-
ously decrease when biased models can predict the
right answers with higher confidence. This means
the base model will pay more attention to samples
that are hard to solve by biased models.
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Figure 1. Negative Gradient versus Predictions
In practice, we clip σ(Hm,i) > 0 with Sigmoid

function, to make the range of −∇L(Hm,i) con-
sistent with the label space [0,1] of BCE loss. Bd
is a statistic answer distribution of the training set,
which satisfies Bd > 0. Therefore, we do not
need to add Sigmoid function on distribution bias
in Eq.11-15 in the main paper.

However, clipping the gradient does not directly
increase the scale of hard samples but only lower-
s the scale of easy ones, resulting in performance
degradation on VQA v2. Actually, for the hard
samples, the gradient can be up to 2.0 without clip
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operation. If we can design a new classification loss
with label space [0, 2] in place of BCE, it may be an
alternative approach to deal with this problem.

A.2. Softmax+CE

We provide GGE optimized with Softmax+CE
loss in Section 5.4. The loss function can be written
as

L(Z, Y ) = −
C∑
i=1

yi log(σi), (2)

with
σi =

ezi∑C
j=1 zj

, (3)

where Z = {zi}Ci=1 is the predicted logits, C is
the number of classes, and yi ∈ [0, 1] is the ground
truth labels. The negative gradient of loss function
is

−∇L(zi) = yi − σi. (4)

Similar to implementation of Sigmoid+BCE, we
directly clip the∇L(zi) to the label space [0,1]

−∇L̂(zi) =

{
yi − σi yi > 0

0 yi = 0
. (5)

As a result, if yi = 0 the pseudo label L̂(zi)
will still be 0, otherwise, it will decrease when
biased models can predict the right answer with
higher confidence. The optimization process is the
same with that in Sigmoid+BCE. Additionally, s-
ince the statistical distributionBd ∈ (0, 1), we treat
σi = Bdi when calculate the gradient in GGE-D
and GGE-DQ.

A.3. GGE-Iter and GGE-tog

In Section 4.1 we provide two optimization
schemes GGE-iteration and GGE-together. The
detailed implementation is shown in Algorithm 1
and 2. Two variants of implementation do not show
an obvious performance gap in most experiments.

B. Details for CGD
First, we should stress that CGD only evalu-

ates whether the visual information is taken for an-
swer prediction, which is parallel with Accuracy

Algorithm 1: GGE-iteration
Input: Observations X , Lables Y ,
Biased features Observations B = {Bm}Mm=1,
Base function f(.|θ) : X → R|Y |,
Bias functions {hm(.|φi) : Bi → R|Y |}Mm=1

Initialize: H0 = 0 ;
for Batch t = 1 . . . T do

for m = 1 . . .M do
Lm(φm)←
L′ (hm(Bm;φm),−∇L(Hm−1, Y ))
Update φm ← φm − α∇φmLm(φm)

end
LM+1(θ)←
L′ (f(X; θ),−∇L(HM , Y ))
Update θ ← θ − α∇θLM+1(θ)

end
return Y = f(X; θ)

Algorithm 2: GGE-together
Input: Observations X , Lables Y ,
Biased features Observations B = {Bm}Mm=1,
Base function f(.|θ) : X → R|Y |,
Bias functions {hm(.|φi) : Bi → R|Y |}Mm=1

Initialize: H0 = 0 ;
for Batch t = 1 . . . T do

for m = 1 . . .M do
Lm(φm)←
L′ (hm(Bm;φm),−∇L(Hm−1, Y ))

end
LM+1(θ)←
L′ (f(X; θ),−∇L(HM , Y ))

L(Θ)←
∑M+1
m=1 Lm

Update Θ← Θ− α∇ΘL(Θ)
end
return Y = f(X; θ)

and different from metrics in Referring Expression
and Visual Grounding tasks. It is proposed to help
quantitatively evaluate models’ grounding ability.

CGD considers the top-N most sensitive visual
region. In this paper, we evaluate the sensitivity vi-
a attention. In Figure 2, we plot change of CGR,
CGW and CGD with different threshold for pre-
vailing methods UpDn [1], RUBi [2], LMH [4] C-
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Figure 2. CGR, CGW and CGD versus attention threshold for prevailing methods.

SS [3] and CSS-Vinv−hat. We set attention thresh-
old t ∈ {0.1, 0.2, 0.3, 0.4}, which indicates that
top-N is no more than {9, 4, 3, 2}.

We choose to consider top-4 (t = 0.2) object-
s for CGD, since many questions need to consider
multiple objects and t = 0.2 is the most discrimina-
tive threshold as shown in Figure 2(c). Apart from
attention, Grad-CAM [9] can be an alternative for
grounding evaluation.

C. Implementation Details for Experi-
ments

C.1. Base Model

We use the publicly available reimplementation
of UpDn1 [1] for our baseline architecture, data
preprocess and optimization.

Image Encoder. Following the popular bottom-
up attention mechanism [1], we use a Faster R-
CNN [8] based framework to extract visual fea-
tures. We select the top-36 region proposals for
each image v ∈ R36×2048.

Question Encoder. Each word is first initial-
ized by 300-dim GloVe word embeddings [7], then
fed into a GRU with 1024-d hidden vector. The
question representation is the last state of GRU
hT ∈ R1024.

Multi-modal Fusion. We use traditional linear
attention between hT and v for visual representa-
tion. and the final representation for classification
is the Hadamard product of vision and question rep-
resentation.

Question-only Classifier. The question-only
classifier is implemented as two fully-connected

1https://github.com/hengyuan-hu/bottom-up-attention-vqa

layers with ReLU activations. The input ques-
tion representation is shared with that in VQA base
model.

Question types. We use 65 question types an-
notated in VQA v2 and VQA-CP, according to the
first few words of the question (e.g., “What color
is”). To save the training time, we simply use s-
tatistic answer distribution conditioned by question
type in the train set as the prediction of distribution
bias.

Optimization. Following UpDn [1], all the ex-
periments are conducted with the Adamax optimiz-
er for 20 epochs with learning rate initialized as
0.001. We train all models on a single RTX 3090
GUP with PyTorch 1.7 [6] and batch size 512.

Data Preprocessing. Following previous work-
s, we filter the answers that appear less than 9 times
in the train set. For each instance with 10 annotat-
ed answers, we set the scores for labels that appear
1/2/3 times as 0.3/0.6/0.9, more than 3 times as 1.0.

C.2. Ablations for Ensemble

SUM-DQ. SUM-DQ ablation is to verify if
GGE can learn biased data with biased models. The
loss for the whole model is

L = L(Bd + σ(Bq) + σ(Ã), A). (6)

LMH+RUBi. LMH [4] and RUBi [2] are meth-
ods that can only reduce a single type of bias.
LMH+RUBi is a direct combination of LMH and
RUBi. It reduces distribution bias with LMH and
shortcut bias with RUBi step by step. The loss for
RUBi is written as

Lrubi(Ã, A) = L(Ã�σ(Gq), Ã) +L(cq(Gq), A),
(7)
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where Gq = g(eq(qi)), g(.)Q → RC . Combining
with LMH, we compose A as

F (A,B,M) = logA+ g(M) logB, (8)

where M and B are the fused feature and the bias
in LMH. The combined loss function is

L = Lrubi(F (A,B,M), Ã) + wH(g(M) logB),
(9)

where H(.) is the entropy and w is a hyper-
parameter.

D. Supplementary Experimental Re-
sults

D.1. Ablations of Base Models

We do experiments on other base models
BAN [5] and S-MRL [2]. The models are re-
implemented based on officially released codes.
For BAN, we set the number of Bilinear Atten-
tion blocks as 3. We choose the last bi-linear at-
tention map of BAN and sum up along the ques-
tion axis, which is referred to as the object atten-
tion for CGR and CGW. Although Accuracy of our
reproduced S-MRL is a litter lower than that in [2],
GGE-DQ can improve the Accuracy over 10% and
surpass most of the existing methods. As shown in
the table, GGE is a model-agnostic de-bias method,
which can improve all three base models UpDn [1],
S-MRL[2] and BAN [5] by a large margin.

D.2. Self-Ensemble Comparison

We provide an additional experiment for RU-
Bi [2] with Self-Ensemble fashion. The input of
the question-only branch is replaced by the join-
t representation from the base model. As shown
in Table 2, RUBi-SF is even worse than baseline
UpDn on both VQA-CP v2 test and VQA v2 val.
On the contrary, Accuracy of GGE-SF is compara-
ble to GGE-Q, which further demonstrates the gen-
eralization of GGE.

D.3. Additional Experimental Results

We provide detailed CGR, CGW, and results
on VQA-CP and VQA v2 for all re-implemented
methods in Section 3 and Section 5.

As shown Table 2, GGE-DQ largely improves
more challenging “Others” question type [11].
This means that GGE-DQ really focuses on im-
ages largely rather than only relying on “in-
verse language bias” for higher Accuracy. More-
over, Inverse-Supervision strategy does not im-
prove GGE-DQ-tog (GGE-DQ-togis in Table 2),
which also demonstrates that GGD-DQ better re-
duces distribution bias compared with other meth-
ods.

There are still some issues about language bias
that deserves further consideration. First, both
GGE-Dsxce and GGE-Qsxce are robust on VQA v2
but GGE-DQsxce drops a lot. We think the soft-
max function will amplify the gradient of biased
models and over-estimate the dataset biases. Sec-
ond, LMH+RUBi performs much better than both
LMH and RUBi on VQA v2. This can bring fur-
ther research into the relationship between distri-
bution bias and shortcut bias. Third, UpDnis does
not degrade a lot in VQA v2, which indicates some
entanglement between entropy regularization and
Inverse-Supervision strategy.

Moreover, we find that GGE also suffers from
degradation on in-distribution data (VQA v2) simi-
lar to previous ensemble-based methods. This indi-
cates that the model may over-estimate the bias for
some instances. We speculate that it is due to too
small scale of the gradient for some samples easy
to fit by distribution bias or shortcut bias. How to
control the over-fitting “degree” of biased model-
s and scale up pseudo labels are potential research
directions in the future.

E. Additional Qualitative Results
In this section, we provide more examples from

GGE-DQ in Figure 3 and some failure cases in Fig-
ure 4.
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Table 1. Ablations of base model BAN and S-MRL.

Method VQA-CP test
All Y/N Num. Others ↑CGR ↓CGW ↑CGD

S-MRL [2] 37.90 43.68 12.04 41.97 41.94 27.32 14.62
+GGE-DQ-tog 54.62 76.11 18.04 47.70 35.61 18.17 17.44
+GGE-DQ-iter 54.03 79.66 20.77 46.72 38.10 22.42 15.68
BAN [5] 35.94 40.39 12.24 40.51 5.33 5.19 0.14
+GGE-DQ-tog 51.91 81.37 21.85 45.46 36.93 27.10 9.83
+GGE-DQ-iter 50.75 74.56 20.59 46.54 20.87 16.85 4.98

Table 2. Extra experimental results for Section 3 and Section 5.

Method
VQA-CP test VQA v2 val

All Y/N Num. Others CGR CGW CGD All Y/N Num. Others
UpDn [1] 39.89 43.01 12.07 45.82 44.27 40.63 3.91 63.79 80.94 42.51 55.78
HINT [10] 47.50 67.21 10.67 46.80 45.21 34.87 10.34 63.38 81.18 42.14 55.66
RUBi [2] 45.42 63.03 11.91 44.33 39.60 33.33 6.27 55.19 61.04 41.00 54.43
LM [4] 48.78 70.37 14.24 46.42 47.30 35.97 11.33 63.26 81.16 42.22 55.22
LMH [4] 52.73 72.95 31.90 47.79 46.44 35.84 10.60 56.35 65.06 37.63 54.69
CSS-V [3] 57.91 80.36 50.45 47.83 42.72 31.28 11.44 53.94 57.48 55.37 38.39
CSS [3] 58.11 83.65 40.73 48.14 46.70 37.89 8.81 53.15 61.20 37.65 53.36
HINTinv 47.20 67.23 13.21 46.15 42.01 39.11 2.90 60.33 74.36 40.31 55.12
CSS-Vinv 58.05 79.84 52.24 47.23 41.38 34.93 6.45 54.39 58.73 38.81 55.23
UpDnis 42.12 45.81 12.98 47.02 44.52 39.59 4.93 62.85 80.34 42.00 55.08
RUBiis 48.16 72.34 12.69 45.22 47.55 33.73 13.83 59.10 76.67 41.09 50.50
LMHis 58.12 79.73 53.41 48.01 39.51 30.82 8.69 43.29 33.22 34.14 53.40
GGE-DQ-togis 54.64 85.47 23.43 47.64 40.47 25.81 14.66 57.16 70.43 38.00 52.13
SUM-DQ 35.46 42.66 12.38 38.01 41.28 38.18 3.91 56.85 81.09 38.55 43.25
LMH+RUBi 51.54 74.55 22.65 47.41 46.67 40.55 6.12 60.68 77.91 39.10 53.15
GGE-D 48.27 70.75 13.42 47.53 38.79 24.48 14.31 62.79 79.24 42.31 55.71
GGE-Q-iter 43.72 48.17 14.24 48.78 43.74 37.04 6.70 61.23 78.28 41.42 53.50
GGE-Q-tog 44.62 47.64 14.34 48.89 45.19 38.56 6.63 62.14 78.64 40.72 54.21
GGE-DQ-iter 57.12 87.35 26.16 49.77 44.35 27.91 16.44 59.30 73.63 40.30 54.29
GGE-DQ-tog 57.32 87.04 27.75 49.59 42.74 27.47 15.27 59.11 73.27 39.99 54.39
RUBi-SF 37.53 43.27 14.11 41.07 39.30 32.66 7.14 55.06 70.85 30.97 49.44
GGE-SF-iter 44.53 50.98 18.24 48.90 45.07 38.99 6.08 60.66 74.93 41.14 52.95
GGE-SF-tog 43.10 49.90 17.74 47.33 42.40 35.85 6.55 59.00 73.71 41.14 52.54
GGE-D-SF-iter 56.33 86.43 23.37 49.32 43.77 29.30 14.47 62.03 80.73 41.79 53.14
GGE-D-SF-tog 52.86 76.25 20.56 49.46 42.48 30.25 12.23 59.00 73.71 41.14 52.54
UpDnsxce 41.37 45.96 12.46 46.90 42.81 40.90 1.91 63.38 81.26 43.13 55.14
GGEsxce-D 53.98 86.06 15.09 47.85 37.45 30.52 6.93 62.34 79.17 41.50 55.06
GGEsxce-Q-iter 52.98 82.27 14.97 48.06 40.64 31.55 9.09 61.76 78.57 42.01 54.20
GGEsxce-Q-tog 52.99 81.86 16.11 47.97 41.01 32.62 8.39 61.38 77.53 42.30 54.14
GGEsxce-DQ-iter 56.25 85.08 24.78 48.56 43.13 29.52 13.61 52.38 54.51 39.93 54.07
GGEsxce-DQ-tog 55.84 84.47 26.96 48.76 41.41 31.02 10.39 52.17 54.17 40.10 53.85

5



Q：Is this a cheese pizza?

yes

no

pizza

unknown

not sure

Q：Is this a lake?

yes

no

lake

not sure

unknown

frisbee

ball

racket

surfboard

paddle

Q：What color horse is closer to the 

camera?
Q：What is the orange food?

oranges

orange

carrot

carrots

fruit

Q：What is this the inside of?

suitcase

luggage

cat

bag

bed

Q：What object is the focal point of 

this picture?

wine glass

glass

wine

hand

phone

Q：what color is the man’s shirt?

blue

blue and white

white and blue

plaid

white

Q：Do the tree leaves indicate it's 

spring or fall?

fall

winter

neither

no

spring

Figure 3. More examples from GGE-DQ. The model can successfully provide the right prediction with right evidences.

Q：How many bananas are there?

4

5

3

2

6

Q：Where is the giraffe?

outside

zoo

forest

outdoors

africa

Q：Why is there a decorated tree in 

the room?

decoration

christmas

party

birthday

happy

white

White and black

black

grey

brown

Q：What color horse is closer to the 

camera?

Q：What is on the sandwich?

lettuce

toothpick

cheese

meat

unknown

Q：What facial expression is the 

man wearing?

smile

serious

happy

smiling

happiness

Figure 4. Failure Cases. Most of the failure cases still match their visual explanations (Wrong predictions with corre-
sponding wrong evidences). The model is still weak in counting problem and questions that hardly appear in the train
set (upper row). Some failure case are due to missing annotation in the dataset, since “outside” and “decoration” can
also be regarded as the right answers (middle row). The last row shows that answers for failure cases are still consistent
with visual explanations rather than language bias, which is identified by low CGW and indicates GGE-DQ really has
better visual-grounding ability.
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