
GANcraft: Unsupervised 3D Neural Rendering of Minecraft Worlds
Supplementary Material

A. Supplementary video
Our project website is available at

https://nvlabs.github.io/GANcraft/. This
includes an overview of the method as well as additional
results.

We also provide a video, including more visual results
and discussion of our work. Specifically, it contains:

• Additional high-resolution video results rendered at
1024ˆ2048 pixels and 30 frames per second

• Style interpolation results
• Additional comparisons with baseline methods
• Illustration of the proposed approach.

Please make sure to check it out at
https://www.youtube.com/watch?v=1Hky092CGFQ.

B. Method details
Here, we provide additional details of our approach.

B.1. Numerical volumetric rendering
The integral in Equation 2 of the main paper can be ap-

proximated with discrete samples via quadrature [39]. As-
sume that we sample N ` 1 points at t1, ..., tN`1 along a
camera ray rptq “ o ` tv. We define

�i “ ti`1 ´ ti,

t̂i “ ti`1 ` ti
2

,

�i “ �
`
r

`
t̂i

˘
, l

`
r

`
t̂i

˘˘˘
,

ci “ c
`
r

`
t̂i

˘
, l

`
r

`
t̂i

˘˘
, z

˘
,

such that

Cprq «
#

Nÿ

i“1

Tip1 ´ expp´�i�iqqci
+

` TN`1cskypv, zq,

where Ti “ exp

˜
´

i´1ÿ

j“1

�j�j

¸
.

B.2. Point sampling algorithm
In this section, we describe the method we use to effi-

ciently sample points from the sparse voxel grid along a
camera ray. Instead of relying on rejection sampling (as in
Liu et al. [31]) to remove points that have not landed inside
any voxel, we first traverse the voxel grid along the ray to
obtain the entrance and exit points of each valid voxel that
the ray has gone through, and then sample points only on the
segments that are inside voxels.

For voxel grid traversal, We implement a 3D version of
Bresenham’s line algorithm [5], which has a very low com-
putational cost of OpNq, where N is the longest dimension
of the voxel grid. Its working principle is as follows: Starting
from the voxel position where the camera resides, for each
step, we traverse to the next voxel which is adjacent to the
current voxel by the face which the ray exits from.

B.3. Network Architecture
GANcraft contains 6 trainable neural networks. Here are

their descriptions and their respective network architectures:

Per-sample MLP. This is the MLP for representing the im-
plicit radiance field, in conjunction with the voxel features.
The network architecture is illustrated in Fig. 6. We condi-
tion the output feature on the style code via weight modula-
tion [25]. The detailed implementation of weight modulation
is shown in Fig. 10.

Neural sky dome. The sky is modeled with an MLP (Fig. 7)
which takes ray direction (represented as a normalized 3D
vector) input and produce the color feature for that ray. The
network is also conditional on the style feature.

Image space renderer. This is a CNN for converting feature
map to RGB image (Fig. 8). As discussed in the main paper,
we use very small kernel sizes to reduce the receptive field
in order to encourage view consistency. The network is
conditional on the style feature.

Style network. Following StyleGAN2 [25], we use an MLP
that is shared across all the style conditioning layers to con-
vert the input style code to an intermediate style feature. Its
architecture is shown in Fig. 9.

Style encoder. The style encoder is a CNN that predicts
the style code given an image. In conjunction with pseudo
ground truth and reconstruction loss, this allows GANcraft to
produce images that follows the style of a given image. Our
style encoder is taken from SPADE [50], which is a 6-layer
CNN followed by a linear layer and VAE reparameterization.
Please refer to the original paper for the details.

Label-conditional discriminator. The discriminator we
use is based on feature pyramid semantics-embedding
(FPSE) discriminator [35]. Its construction is shown in
Fig. 11. Compared to the patch discriminator used in
SPADE [50], the FPSE discriminator is more robust to the
distribution mismatch in the label map domain. A patch
discriminator which takes the concatenated image and la-
bel map as input sometimes lead to training collapse almost
immediately after the training starts.

https://nvlabs.github.io/GANcraft/
https://www.youtube.com/watch?v=1Hky092CGFQ

Partial
Positional
Encoding

Trilinearly
interpolated
location code

𝑔𝑖(𝐩)

Linear
LReLU

Per-sample Network

Voxel label
𝑙(𝐩)

Concat Linear Opacity 𝜎

ModLinear
LReLU Linear

Style feature
ො𝐳

Feature 𝐜

Linear
LReLU

Linear
LReLU

Linear
LReLU

ModLinear
LReLU

64 232

12

244 256 256 256 256 1

256 256 64

256

Figure 6: Per-sample MLP for representing the implicit radiance field in conjunction with the voxel features. We use weight
modulation to condition the output feature c on the style feature. This is more computationally efficient than doing affine
modulation on the per-layer feature when the same style is applied to a large number of samples. The number on each arrow
denotes the number of channels. As a means of conserving the memory, we use partial positional encoding on the location
code, which performs positional encoding only on the first 24 channels, and concatenate the result with the remaining 40
channels.

Positional
Encoding

Ray direction
𝐯

Linear
LReLU

Sky Network

Concat Linear

Style feature
ො𝐳

Linear
LReLU

Linear
LReLU

Linear
LReLU

3 30 286 256 256 256 256 64

256

Feature 𝐜sky
Linear
LReLU

256

Figure 7: Network architecture for the neural sky dome MLP. The input ray direction is represented as a normalized 3D vector.
The numbers on the arrows denote the number of channels.

Feature map ResBlock
3x3

ResBlock
3x3

ResBlock
1x1

Linear

RGB ImageConv
1x1

Image Space Renderer
Style feature ො𝐳

Conv
1x1 × +

Linear

Linear

× +

Linear

25664

256

256 3256 256

256

256

256

256

Figure 8: Network architecture for the image space renderer. The kernel sizes are shown inside each block and the channel
counts are displayed on the arrows. We apply Leaky ReLU after each Conv block, inside ResBlocks and after the affine
modulations. We use hyperbolic tangent activation for generating the final image (omitted here for clarity).

Linear
LReLU

Style Network

LinearStyle code 𝐳 Linear
LReLU

Linear
LReLU

Linear
LReLU

256 256 256 256128 256 Style feature
ො𝐳

Figure 9: The architecture of style network. Following StyleGAN2 [25], we use a common MLP that is shared across all the
style conditioning layers to convert the input style code to an intermediate style feature.

ModLinear Layer

Linear

Style feature
Weight

Input
𝑁 × 𝐶𝑖𝑛

𝐶𝑠𝑡𝑦𝑙𝑒

𝐶𝑜𝑢𝑡

Linear ×

@

𝐶𝑜𝑢𝑡

𝐶𝑖𝑛 × 𝐶𝑜𝑢𝑡

𝐶𝑖𝑛 × 𝐶𝑜𝑢𝑡

+𝑁 × 𝐶𝑜𝑢𝑡 Output𝑁 × 𝐶𝑜𝑢𝑡

Figure 10: Detailed structure of ModLinear layer used in the per-sample network (Figure 6). ‘@’ denotes matrix multiplication.
Shapes of intermediate tensors are denoted on the arrows. The batch dimension is omitted for clarity.

Discriminator

Conv
3x3
�2

3 128

One-hot
Label Map

RGB Image
Conv
3x3
�2

Conv
3x3
�2

Conv
3x3
�2

Conv
3x3
�2

+�2Conv
1x1 �2 �2+ +

Conv
1x1

Conv
1x1

Conv
1x1

�2

256

512

1024 512

512

512

512

1024 Conv
3x3

256

Conv
1x1

12
12 1

Score Mapdot

Figure 11: The conditional discriminator used in GANcraft. ‘dot’ denotes dot product on the channel dimension. ‘Ó 2’ denotes
downsample by 2. ‘Ò 2’ denotes upsample by 2. We use bilinear interpolation for upsampling, and stride 2 convolution for
downsampling. For label map, we downsample it via nearest neighbor interpolation. We use spectral normalization [40] on all
the convolution layers in the discriminator.

B.4. Label Translation

There is significant difference between Minecraft voxel
labels, which we use as the starting point of GANcraft, and
COCO-Stuff [10] labels, which is the format the pretrained
DeepLabV2 model produces and the pretrained SPADE
model accepts. In Minecraft Java edition, there are 680
labels in total, mostly describing raw materials (dirt, sand,
log, water, etc.) useful for building objects. While in COCO-
Stuff, there are 182 higher level labels of common objects
such as mountain, tree, river, and sea. Due to the drastic
difference in the level of abstraction, it is very difficult to find
a one-to-one mapping between Minecraft label and COCO-
Stuff label. For example, the water material in Minecraft can
be mapped to either sea or river label in COCO-Stuff; the
tree material consists of both log and leaf label in COCO-

Stuff. We solve the labeling difference in two ways. For the
label-conditional discriminator, we introduce a new set of 12
classes with high level of abstraction: ignore, sky, tree, dirt,

flower, grass, gravel, water, rock, stone, sand, and snow. We
then classify every Minecraft and COCO-Stuff label into one
of the 12 classes, and use the translated semantic segmenta-
tion mask as the conditional input to the discriminator. For
generating pseudo-ground truth, however, we will have to
convert Minecraft labels to COCO-Stuff labels in order to be
recognized by the pretrained SPADE generator. We achieve
this by first translating the Minecraft labels to one of the 12
labels, and then map them to COCO-Stuff labels randomly,
with equal chance across all the candidate labels. Note that
we use the same mapping scheme within a segmentation
map. We are able to obtain good result from such a simple
measure, as the style encoder is able to explain away the

Figure 12: Bird’s-eye view of the 5 Minecraft worlds used. Each block is color-coded by its label (brown-sand, blue-water,
light green-grass, dark green-trees, white-snow, etc.). We use worlds with varying distributions of sand, forest, water, snow,
trees, grass, etc. The label distribution of each specific world is very different from that of a collection of real images, e.g.
the first world is °50% sand, and the second is °90% water. Our method works for all these worlds despite the domain gap,
indicating the robustness of our framework.

Figure 13: Outputs of the ablated model that does not use pseudo-ground truths. This model was trained only with a
GAN loss between the outputs and real images, and obtains low FID and KID values, as seen in Table 4. However, the output
images look unrealistic and do not learn the correct correspondence between input segmentation labels and realistic textures.

Figure 14: Blockiness in some outputs. Certain regions and objects appear blocky due to the underlying blocky geometry
that is very different from occurrences in the real world.

randomness in the mapping.

B.5. Voxel Preprocessing
Minecraft voxel world has a sea level of 62, below which

most of the voxels are not visible from above. It will be a
waste of memory if we still assign voxel features to those
invisible voxels. Thus we preprocess the voxel by removing
the interior voxels, leaving a 4 voxel thick thin shell. This
operation reduces the occupancy of a typical voxel world
from 28% to 3%. The effect of preprocessing can be seen
at the borders of the voxel worlds in Fig. 12. Note that the
preprocessing step is not only useful for Minecraft world. It

is applicable to any types of voxel grids.

C. Experiment details
C.1. Minecraft block worlds.

We use 5 different Minecraft worlds for our experiments.
An overview of these worlds is shown in Fig. 12. As can
be seen, the label distribution of each specific world is very
different from that of a collection of real images, e.g. the first
world is °50% sand, and the second is °90% water. Our
method works for all these worlds despite the domain gap,
indicating the robustness of our framework.

Figure 15: Incompatible styles. Certain combinations of
styles and worlds give unrealistic outputs, possibly as these
styles are outliers.

C.2. GANcraft settings
During training, we generate images at a resolution of

256ˆ256. We sample 24 points along each ray, and truncate
the rays to a maximum distance of 3 (distance traveled out-
side voxels doesn’t count). We use a learning rate of 1e-4
for the generator networks, and 4e-4 for the discriminator.
For voxel features, we use a higher learning rate of 5e-3.
We use a combination of GAN loss, L2 loss, L1 loss and
perceptual loss, with their weights being 1.0, 10.0, 1.0 and
10.0, respectively. For regularization terms, we use a weight
of 0.5 for the opacity regularization, and a weight of 0.05
for the KL divergence needed by the style encoder. We also
clip the per-sample feature c to a range of r´1, 1s before
blending to reduce the ambiguity between the opacity and
the scale of feature. For random camera pose sampling, we
sample two points that are slightly above ground, and use
one of the as the camera location and the other one as the
point that the camera looks at. We reject any camera pose
that produces a depth map with a mean depth below 2 or
that produces a segmentation mask with label entropy below
0.75. This guarantees that the segmentation mask along can
provide enough scene geometry hint to the SPADE generator
for generating a pseudo-ground truth that corresponds well
to the actual scene geometry.

During evaluation, we increase the sample count to 32
points per ray. On an NVIDIA Titan V, this takes approxi-
mately 10 seconds to render a 1024ˆ2048 frame.

C.3. Baseline settings
For fair comparison, the settings used in the NSVF-W

baseline largely resembles GANcraft except for the follow-
ing differences:

• Only L2 loss and KL divergence is used during training.
• The weight for KL divergence is reduced to 0.01 to

avoid handicapping the style encoder too much in the
absence of other reconstruction losses.

• The image space CNN renderer is removed, and the
per-sample MLP directly produces an RGB radiance

(clipped by a sigmoid function) instead of a feature.

D. Additional results

Method FID Ó KID Ó
Full model 78.79 0.043
No CNN 84.86 0.049
No real images 89.95 0.055
No GAN loss 104.58 0.073
No pseudo-ground truth 65.40 0.043

Table 4: Ablation comparison on automated image qual-
ity metrics (Ó indicates lower is better). We compare ablated
versions of our full method on a single block world.

D.1. Ablation study
Here, we present quantitative results for the ablated ver-

sions of our full model. Sample outputs from these ablations
were shown in Fig. 5 of the main paper. We trained all ab-
lations on one world only, due to computational constraints
(each model takes 4 days on 8 NVIDIA V100 GPUs).

The results of automated metric evaluation as shown in
Table 4. We computed the FID and KID values with 2000
images generated from random camera poses and 5000 held-
out real images. As expected, all ablated versions obtain
higher FID and KID scores indicating worse quality. An
exception is the model trained without any pseudo-ground
truth images, i.e. trained with GAN loss between outputs and
real images only. Surprisingly, it obtains a lower FID and
KID than our full model. However, when we visually inspect
the outputs, shown in Fig. 13, it is clear that the model fails to
learn a meaningful mapping from Minecraft segmentations
to real images. The model seems to have learned to produce
unrealistic images that optimize the metrics due to training
with the GAN loss. However, similar to MUNIT [21], the
outputs are both unrealistic and incorrectly map Minecraft
segmentation labels to real images.

We observed that our method can fail in two ways —
either producing blocky outputs or producing unrealistic out-
puts. In the input block world, all objects and regions are
made of blocks. Due to this coarse geometry, the method is
sometimes unable to learn realistic geometries in the trans-
lated world. As a result, boundaries can often appear jagged,
as shown in Fig. 14. Further, certain combinations of worlds
and style-conditioning images can produce unrealistic out-
puts as shown in Fig. 15. For example, a forest world paired
with a conditioning image of a red sunset can produce unre-
alistic, or overly dark outputs. As the style encoder is trained
exclusively with pseudo-ground truth images that have the
same label distribution as the rendered Minecraft images, it
has never encountered such combinations.

