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A. Overview
In this supplementary material, we provide details and

extra experiment that are not shown in the main paper.
Firstly, we provide more visualization results about the the
similarity matrix (Sect. B). Then we introduce the details of
the proposed GSBA method (Sect. C). At last, we give the
extra experiment to explore the influence of the receptive
field (Sect. D).

B. Visualization of the Similarity Matrix
In Sect.3.4, we give an instance to explore the property

of the features after sharing the weights. As shown in Fig. 3,
we also visualize the similarity matrices in different cases:
without WS, with WS, and with WS & GSBA. We can find
that only with the WS method, the GCF of a key frame will
have a strong correlation with the LVFs of the frames nearby
it. Meanwhile, with the gloss segmentation, the GCF of a
key frame will focus on more LVFs nearby it. More visu-
alization results on the training set and the development set
are given in Fig. 4. And we find that all of them show a
similar characteristic with the instance we gave in Sect.3.4.

C. Gloss Segment Boundary Assignment
The pseudo-code of GSBA is described in Algorithm 1.

It consists of two functions: LOCATE and EXPAND.
For the LOCATE function, it is used to locate the key

frame of the current class ci. We scan the predict probability
distribution Ŷg to get the location t.

For the EXPAND function, it is used to expand the key
frame. We treat the located key frame as an anchor frame.
We first set an expanded radius d to limit the maximum ex-
pansion distance and a direction s ∈ {−1, 1} to determine
the expand direction. Then, we expand the frame from t+s
to t+ s ∗ d frame. If the cosine similarity between the GCF
of the current expanding frame and the weight vector of ci
is the smallest among the classes cj ∈ l, we then annotate
this frame with the label ci. Otherwise, we will stop the
expansion process.

Algorithm 1 Gloss Segment Boundary Assignment
Input: video’s GCF sequence G,ground truth sign gloss

sequence l,predict probability distribution Ŷg , classifier
weight vectors W , expanded radius d.

Output: pseudo gloss segment labels yseg

1: function LOCATE(li, pos)
2: for t← pos; t ≤ |G| do
3: ct ← argmin {ŷt}
4: if ct == li then
5: pos← t
6: return t, pos
7: else
8: break
9: end if

10: end for
11: end function
12:
13: function EXPAND(t, li, s)
14: for j ← 1; j ≤ d do
15: ct+js ← argmin {〈gt,wc〉}c∈l

16: if ct+js == li then
17: yseg ← {t+ js, li}
18: else
19: break
20: end if
21: end for
22: end function
23:
24: for i← 1; i ≤ |G| do
25: yseg ← {i, blank}
26: end for
27: pos = 1
28: for i← 1; i ≤ |l| do
29: t, pos← LOCATE(li, pos)
30: yseg ← {t, li}
31: EXPAND(t, li,−1)
32: EXPAND(t, li, 1)
33: end for
34: return yseg



Based on the two functions mentioned above, we first
initialize each frame’s label as the blank class. Then we
use the LOCATE function to locate the key frames for each
class li in the ground truth sign gloss sequence l. After
that, we use the EXPAND function to expand the key frames
and update the pseudo gloss segment labels Y seg . Then we
smooth the Y seg , and get the smoothed labels Ỹ seg as:

ỹsegij =

{
1− ε if j = ysegi

ε
|G|+1 otherwise,

(1)

where ε is the label smoothing rate. More visualizations
of the pseudo gloss segment label produced by GSBA are
shown in Fig. 5.

Note that, we active the GSBA after epoch 20 to avoid
the unreliable segment proposal at the initial optimization
stage. And we enlarge the expanded radius d after the train-
ing of the contextual module tends to steady to introduce
more spatial-temporal information.

D. Details on Temporal Receptive Field
We define r as the temporal receptive field (TRF) of the

visual module. As r is relevant to a temporal window in the
contextual module, and suitable size of the visual module’s
TRF will better match the followed contextual module. As
shown in Fig. 1 and Fig. 2, we visualize the self-similarity
matrices of the visual module with different TRFs and find
that the self-similarity matrix with larger TRF tends to be
more diagonal. The blank and non-blank features will be
hard to distinguish if the TRF is small, and this will in-
crease the difficulty of aligning features from the two mod-
ules. Moreover, we compare the performances with differ-
ent TRF of the visual module as shown in Table 1. We
observe that small r will results in performance deteriora-
tion due to the loss of temporal information. Besides, the
overuse of the pooling operation will also harm the perfor-
mance. Among the selected TRFs, the optimal structure is
C5−P2−C5. So we set the visual module as C5−P2−C5

by default.

Table 1. Ablation studies on the TRF of the visual module on
the PHOENIX14 dataset (only trained in the synchronous train-
ing stage).

Visual Module TRF Dev (%) Test (%)
C5 5 22.5 23.3

C5 − C5 9 22.4 23.2
C5 − P2 − C5 14 21.2 21.4

C5 − P2 − C5 − P2 16 22.1 22.7
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Figure 1. The heatmaps of LVFs’ self similarity matrix with recep-
tive fields 5.
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Figure 2. The heatmaps of LVFs’ self similarity matrix with recep-
tive fields 9.
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(a) Self similarity matrix of the LVFs.
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(b) Self similarity matrix of the GCFs.
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(c) Similarity matrix between the LVFs and GCFs.
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(d) Self similarity matrix of the LVFs.
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(e) Self similarity matrix of the GCFs.
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(f) Similarity matrix between the LVFs and GCFs.
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(g) Self similarity matrix of the LVFs.
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(h) Self similarity matrix of the GCFs.
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(i) Similarity matrix between the LVFs and GCFs.

Figure 3. The heatmap of the LVFs’ and GCFs’ self-similarity matrices and the similarity matrix between the LVFs and the GCFs (the
darker color represents the higher similarity). From top to bottom are the results that network training without WS, with WS and with
WS & GSBA.
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(a) Self similarity matrix of the LVFs.
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(b) Self similarity matrix of the GCFs.
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(c) Similarity matrix between the LVFs and GCFs.
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(d) Self similarity matrix of the LVFs.
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(e) Self similarity matrix of the GCFs.
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(f) Similarity matrix between the LVFs and GCFs.
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(g) Self similarity matrix of the LVFs.
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(h) Self similarity matrix of the GCFs.
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(i) Similarity matrix between the LVFs and GCFs.

Figure 4. The heatmap of the LVFs’ and GCFs’ self-similarity matrices and the similarity matrix between the LVFs and the GCFs in
different examples (the darker color represents the higher similarity).
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(g) Example7. (h) Example8. (i) Example9.

Figure 5. From top to bottom are the spike phenomenon and the pseudo gloss segment labels produced by GSBA with d = 1, 2, 3 (different
colors represent different classes).


