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Figure 1: Examples of action styles in our motion capture
data.

1. Data Preparation
1.1. Motion Data

Fig. 1 shows examples of different sitting and lying down
styles from our MoCap. A breakdown of the dataset in
terms of different actions is shown in Table 1. The objects
used during the MoCap are shown in Fig. 2.

Figure 2: Objects used during motion capture.

1.2. Goal Data

We select 5 categories from ShapeNet namely, sofas, L-
shaped sofas, chairs, armchairs, and tables. From each cat-

Labels Minutes Percentage %
Idle 18.3 17.7

Walk 42.3 41.0
Run 5.1 4.9
Sit 27.3 26.4

Lie down 10.1 9.7
Total 103.3

Table 1: Motion capture data breakdown with respect to
actions.

Figure 3: Goal Labelling.

Category Number of Objects
Armchairs 15

Chairs 16
Sofa 20

L-Sofa 18
Tables 18
Total 87

Table 2: GoalNet data breakdown with respect to object cat-
egories.

egory, we select 15 − 20 instances and we manually label
1− 5 goals for each instance. Table. 2 shows the number of
instances for each category. We manually label 1− 5 goals
for each instance. The number of goals labelled per instance
depends on how many different goals an object can afford.
For example, we label 5 different goals for the L-shaped
sofa compared to 3 for the chair as shown in Fig. 3.



Network Architecture
State Encoder {512, 256, 256}

Interaction Encoder {256, 256, 256}
Gating Network {512, 256, 12}

Prediction Network {512, 512, 647}

Table 3: Architecture details. All networks are all three-
layer fully connected networks with ELU.

2. Training Details
2.1. MotionNet

The character state X is of size 647. The State Encoder,
Interaction Encoder, Gating Network, and Prediction Net-
work are all three-layer fully connected networks with rec-
tified linear function ELU. The dimensions of each network
are in Table 3. The encoder latent code Z is of size 64 and
we set the number of experts K to 12. We use a learning
rate of 5e− 5 and train our network for 100 epochs. We use
the Adam optimizer with linear weight decay. The weight
of the Kullback-Leibler divergence β1 is 0.1.

2.2. GoalNet

The Interaction Encoder of GoalNet is a three-layer fully
connected network of shape {512, 512, 64}. The latent vec-
tor Zgoal is of size 3. The weight of the Kullback-Leibler
divergence β2 is 0.5. We use the Adam optimizer with a
learning rate of 1e− 3 and train GoalNet for 100 epochs.

2.3. Schedule Sampling

For the schedule sampling training strategy, we set C1 =
30 and C2 = 60. We define a roll-out window of size L
where we set L = 60 in our experiments. For each roll-out,
we feed the ground truth first frame as input to the network
and then sequentially predict the subsequent frames while
using the scheduled sampling strategy. We divide our train-
ing data to equal-length clips of size L.

3. Baselines
As our baselines, we choose a feedforward network

(MLP) and a Mixture of Experts (MoE). The architecture
of the MLP is shown in Fig. 4. We use the same Interac-
tion Encoder used for our MotionNet followed by four fully
connected layers of size 512. The architecture of the MoE is
shown in Fig. 5. The Interaction Encoder, Gating Network,
and Prediction Network are all the same as the one used in
MotionNet.

4. Schedule Sampling
We found that using Schedule Sampling is essential to

enable the character to successfully reach the goal and ex-
ecute the action. Without it, we found the model to often

Figure 4: MLP Architecture.

Figure 5: MoE Architecture.

Figure 6: SAMP With Schedule Sampling (Top) and with-
out (bottom). The black line shows the root projection on
the xz plane. The blue and green circles denote the root at
the first and last frame respectively. The red circle denotes
the goal position. Note how SAMP fails to reach the goal
without the use of Schedule Sampling.

diverge, get stuck, or take very long time to reach the goal
as we show in Fig. 6.

5. Path Planning Formulation
In order to use the Path Planning Module, we first com-

pute the surface area where the character could stand or



move. We call this the navigation mesh. This is computed
from the character cylinder collider and the scene geome-
try. The navigation mesh is stored as convex polygons. To
find a path between given start and end points, we first map
these points to the closest polygons and then use A* to find
the shortest path between the polygons 1.

6. Data Augmentation Details
When the object is transformed, the contacts follow the

same transformation. When the object is replaced by a new
one, we project the original contact by finding the closest
points on the surface of the new object. The new motion
curve is computed by interpolation and the whole full body
pose is computed using CCD IK solver. This does not guar-
antee smoothness but we found it to be stable in practice.
More details are in [2].

7. Interaction Encoder Ablation:
To quantify the importance of the Interaction Encoder,

we trained SAMP without the Interaction Encoder. We
found that the precision of reaching the goal deteriorates
to 14.82 cm and 3.65 deg compared to 6.09 cm and 3.55
deg when the Interaction Encoder was used.

8. Comparison to Cao et al.:
While relevant, the formulation of Cao [1] et al. is sig-

nificantly different than our method making a direct com-
parison difficult. Given a target interaction object and ac-
tion (e.g. “sit on the couch”), SAMP samples a goal loca-
tion and orientation on the object, computes an obstacle-
free path towards the object, and synthesizes diverse motion
sequences that are of arbitrary length until the goal is exe-
cuted. We assume that the character starts the action from
an idle position without any knowledge of the past. In con-
trast, Cao et al. sample a goal location in the image space
given a one-second-long history of motion. Based on this
trajectory, a deterministic motion sequence of fixed length
(two-seconds) is synthesized. The action executed in this
trajectory is not controllable.

9. Failure Cases
We observe that SAMP might not adapt well to ob-

jects with significantly different geometry than those seen
in training as shown in Fig. 7. Future work might explore
different methods of encoding the object geometry.
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Figure 7: SAMP with significantly different geometry.
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