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Contents 1. Datasets Details
1. Datasets Details 1 We evaluate our Dense Interaction Learning (DenselL) on
several commonly adopted video-based person re-ID bench-
2. More Implementation Details 2 marks, including MARS [43], DukeMTMC-VideoReID
2.1. Overall Architecture . . . . . . . .. .... 2 (DukeV) [27, 36] and iLIDS-VID [34]. We give detailed
statistics of three datasets as follows.
3. Comparison with Transformer-based Model 3
Datasets | MARS [43] DukeV [27,36] iLIDS-VID [34]
4. Complete Performance Comparison 3 # Identities 1.261 1 404 300
# Sequences 20,715 4,832 600
5. More Qualitative Analysis 3 #Boxes 1,067,516 815,420 42,460
# Frames 58 168 73
# Cameras 6 8 2
# Detector DPM Hand Hand

Table 1: The statistics of video-based person re-ID datasets.

MARS [43]. It is a large-scale video-based person re-
identification (re-ID) benchmark dataset with 17,503 se-
quences of 1,261 identities and 3,248 distractor sequences.
All sequences are captured by 6 cameras. There are 625
identities in the training set and 636 identities in the testing
set. The bounding boxes are detected with DPM detector [7],
and tracked using the GMMCEP tracker [6]. It is one of the
most challenging datasets due to the failure of detection or
tracking.

DukeMTMC-VideoRelID (DukeV) [27, 36]. This dataset
is also a large-scale benchmark introduced for video-based
person re-ID derived from the DukeMTMC dataset [27]. It
comprises 4,832 tracklets of 1,404 identities and 408 dis-
tractor identities, where each pedestrian image are cropped
from the videos for 12 frames every second. Each track con-
tains 168 frames on average. The dataset is divided into 408,
702 and 702 identities for distraction, training and testing
respectively. Detection ground truths are manually labeled.

iLIDS-VID [34]. Itis created by observing pedestrians in
two cameras. The outputs of two non-overlapping cameras
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(d) Overall architecture for DenselL.

Figure 1: The proposed three model variants for the video-based person re-ID task. (a) The decoder only consists of self-
attention (is equivalent to the encoder of vanilla Transformer). (b) The decoder contains both self-attention and encoder-decoder
attention (is equivalent to the decoder of vanilla Transformer). (c) Our DI decoder involves self-attention and the proposed
Dense Attention (The & denotes the concatenation operation). (d) The detailed architecture for our proposed DenselL. All
schemes are equipped with our proposed STEP-Emb. We omit the layer normalization for simplicity.

are captured at a crowded airport arrival hall. It comprises
600 image sequences of 300 identities with one pair of se-
quences from two cameras for each person. Each image
sequence has a variable length ranging from 23 to 192 image
frames, with an average number of 73 images. The bounding
boxes are human annotated and the challenge is mainly due
to the random occlusions.

In general, MARS and DukeV are large-scale video-based
person re-ID benchmarks while iLIDS-VID is relatively
small. Conducting experiments on all three datasets with
different properties demonstrates a powerful generalization
ability for various scenarios.

2. More Implementation Details

In the main body of the paper, we introduce three model
variants for the overall architecture to dive deeply into the
CNN-Attention hybrid structure. In this section, we give
more details on implementation for the reproducibility, espe-
cially for our proposed DenselL.

2.1. Overall Architecture

Figure 1a, 1b and Ic give detailed operating principle of
various attention mechanisms, where the components con-
tained in the dashed boxes can be regarded as basic building

blocks to stack up. In Figure 1d, we demonstrate the whole
data pipeline of the DenselL. Each step is described in details
in the following:

Inputs. We adopt restricted random sampling strategy [21,

, 40] to randomly sample frames from equally divided 8
chunks for each video clip. The obtained 8 frames with RGB
format are then preprocessed by resizing, random horizontal
flips and random erasing for data augmentation before fed
into CNN encoder. Note that, according to our experiments,
we empirically find that frame-level random horizontal flips
(randomly flip for each frame) and sequence-level random
erasing (randomly erase the same region for the whole input
sequence) achieve the highest performance, which is con-
sistent with previous studies [22, 44, 41, 4]. We therefore
apply such data augmentation strategy for all the settings in
our experiments.

CNN Encoder & Horizontal Partition. The CNN en-
coder consists of several building blocks, each block can
be an arbitrary CNN structure (e.g., Res-Block [10], Dense-
Block [16], etc.). For the spatial feature generated by each
block, we perform PPool(+) on it and thus obtain a feature
vector for each partition, as shown in Figure 1d. Note that,
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architecture [2]. The components marked as green color denote the differences.

in our implementation, the CNN encoder is first pretrained
and then fixed during training the DI decoder.

DI decoder & STEP-Emb. The DI decoder also consists
of stacked building blocks (dashed boxes in Figure 1d). It
takes partitioned spatial features from preceding CNN blocks
as inputs. For each of them, we additionally equip the feature
with the proposed STEP-Emb by summation, to explicitly
inject information to indicate the absolute or relative position
of inputs to the model.

Outputs. Basically, the outputs of the DI decoder share
the same dimension with its input. Therefore, we perform
spatial-temporal average pooling on the outputs of DI de-
coder to acquire a feature vector (descriptor) for each video
clip. Following the common practice [25, , 9], the
resulting feature vector is treated by a BatchNorm [17] layer
and a linear classifier. We employ batch triplet loss [13]
and cross-entropy loss for the features processed after Batch-
Norm and classifier respectively. In the inference, we use
the features generated by BatchNorm layer to measure the
cosine distance between two image pairs.

k) s

3. Comparison with Transformer-based Model

Attention has enjoyed rich success in tasks such as Neu-
ral Machine Translation [1, 33, ], of which Trans-
former [33] is the most success one. Inspired by this, some-
one starts to consider borrowing the entire Transformer
architecture to jointly model vision-language representa-
tions [32, , 5] or exploit relations of the objects in
image object detection [2, 46]. Among them, DETR [2]
is proposed very recently and attracts lots of attention.
DETR [2] is a end-to-end object detection framework that
works by building both vanilla Transformer encoder and
decoder on the highest level of CNN spatial features, as
illustrated in Figure 2b. It shares the same high-level insight
on leveraging Attention mechanism to model relationship be-
tween objects. However, the fine-grained information is still
not fully exploited due to its cascaded architecture, while our
DenselL is able to pay attention to multi-scale fine-grained
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CNN representations by the proposed Dense Attention, as
shown in Figure 2c.

4. Complete Performance Comparison

Due to the limited space, we only provide comparison
with recently proposed state-of-the-art results in the main
body of paper. Here, we give a full version of performance
comparison in Table 2. From it, we can easily conclude
that our DensellL enables new top results in all datasets
and metrics. In particular, our scheme increases over the
existing best performance by 1.1% mAP in MARS dataset,
0.9% mAP in DukeMTMC-VideoRelD dataset, 3.4% Rank-
1 in iLIDS-VID dataset, demonstrating strong discriminative
representation ability and great generalization ability.

5. More Qualitative Analysis

In this section, we provide more qualitative analysis on
how DenselLL works. We illustrate the re-identification re-
sults of both baseline and our scheme in Figure 3. In each
part of Figure 3, the left column is sampled frames of query
sequence and the right five columns are the sampled frame
of top-5 retrieved sequences in the gallery set. The item
annotated with green box is correctly re-identified, and the
red box denotes the wrong results.

We observe that, in the top-left, bottom-left and bottom-
right cases, although there exists misalignment, movement
and occlusion in the query respectively, our scheme is still
able to match the person-of-interest accurately. While the
baseline model misses the sequences of the same identity, es-
pecially in bottom-left case. Meanwhile, in the top-left, top-
right and bottom-right cases, the baseline model re-identities
the query incorrectly due to ignoring the fine-grained infor-
mation between visually similar identities. For example, in
the top-right case, the baseline model returns wrong results
probably owing to the low light condition. In contrast, Den-
selL captures the contour and the fine-grained characters on
her back, yielding a satisfactory re-ID result.



MARS DukeV iLIDS-VID

Methods Proc. Backbone

mAP  R-1 R-5 R20| mAP R-1 R5 R-10|R1 RS
CNN+XQDA [43] | ECCV16 | CaffeNet | 47.6 653 820 890 | - - - - | 530 814
AMOC [23] TCSVT17 | AMOC | 529 683 814 906 | - - - - | 687 943
SeeForest [45] CVPRI7 | CaffeNet | 50.7 70.6 900 976 | - - - - | 552 865
MSCAN [ 18] CVPRI7 | MSCAN | 56.1 718 866 93.1 | - - - - - -
QAN [18] CVPR17 QAN - - - - - - - - | 680 868
ASTPN [38] ICCV17 ASTPN - 440 700 810 | - - - - | 620 860
MGCAM [29] CVPRI8 | MSCAN | 712 772 - - - - - - - -
Snippet [3] CVPRI8 Res50 76.1 863 947 982 | - - - - | 854 967
DuATM [28] CVPRI8 | Densel2l | 677 812 925 - | 646 818 902 - - -
STAN [21] CVPR18 Res50 658 823 - - - - - - 802 -
ETAP-Net [36] CVPRI8 Res50 674 808 921 96.1 | 783 836 946 976 | - -
STA [8] AAAII9 Res50 808 863 957 - | 949 962 993 996 | - -
M3D [20] AAAII9 | Res50-3D | 74.1 844 938 97.7 | - - - - | 741 943
ADFD [42] CVPR19 Res50 782 870 954 987 | - - - - 8.3 974
VRSTC [15] CVPR19 Res50 823 885 965 - | 935 950 99.1 994 | 834 955
GLTR [19] ICCV19 Res50 785 870 958 982 | 937 963 993 - | 860 98.0
COSAM [31] ICCV19 | SE-Res50 | 79.9 849 955 979 | 941 954 993 - | 796 0953
STE-NVAN [22] | BMVCI9 | ResS0-NL | 812 889 - - ] 935 952 - - - -
MG-RAFA [4]] CVPR20 Res50 859 888 97.0 985 | - - - - | 886 980
MGH [39] CVPR20 | Res50-NL | 858 90.0 967 985 | - - - - | 856 971
STGCN [40] CVPR20 Res50 837 900 964 983 | 957 973 993 - - -
TCLNet [14] ECCV20 | Res50-TCL | 85.1 898 - - | 962 99 @ - - | 866 -
AP3D [9] ECCV20 AP3D 851 90.1 - - ] 956 963 - - | 867 -
AFA [4] ECCV20 Res50 829 902 96.6 - | 954 972 994 997 | 885 96.8
Ours \ - | Res50 | 87.0 90.8 971 988 | 971 97.6 997 999 | 920 98.0

Table 2: Comparison with state-of-the-art results. NL means the backbone is integrated with Non-Local block [35].
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Figure 3: Visualization of the re-identification results of both baseline and our scheme. The left column of each part is sampled
frames of query sequence and the right five columns are the sampled frame of top-5 retrieved sequences in the gallery set,
where the item annotated with green box is correctly re-identified, and the red box denotes the wrong results.
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