— Supplemental Material —
Distilling Virtual Examples for Long-tailed Recognition

Yin-Yin He!, Jianxin Wu!, Xiu-Shen Wei?!
! State Key Laboratory for Novel Software Technology, Nanjing University, China

2School of Computer Science and Engineering, Nanjing University of Science and Technology, China

heyy@lamda.nju.edu.cn, {wujx2001, weixs.gm}@gmail.com

A. Additional experiments on the influence of
virtual example distribution flatness

Due to the space limit of the main paper, we explain
the experimental details of Sec 3.3 in this appendix. The
virtual example ratio R between tail and head equals
% after smoothing, and R € [ L, % +1)
because we restrict that 0 < € < 0.5. We sampled
e € {0,0.1,0.2,0.3,0.4}, and each experiment was run for
5 times to compute the mean and standard deviation.

In this section, following Sec. 3.3 of our main paper, we
conduct additional experiments under different settings, to
further justify our conjecture that virtual example distribu-
tion must be flat. Specifically, we vary the categories and
the imbalance factor. Results are in Fig. 1.

In Fig. 1(a), we use “airplane” as the head and “dog” as
the tail category, which are very dissimilar in appearance.
But, similar to what Fig. 3 in the main paper shows, the
performance is improved significantly as the virtual exam-
ple distribution gets flatter. Comparing Fig. 1(a), Fig. 1(b)
and Fig. 1(c), under different imbalance factors or dataset
size, all head accuracies are almost intact while the tail ac-
curacies increase significantly as the virtual example distri-
bution goes flatter.

All these observations are consistent with our conjecture
that the virtual example distribution must be flat.

B. Implementation details

In this section, we describe the implementation details of
our DiVE in different long-tailed datasets. The properties
of all datasets used in our experiments are summarized in
Table 1.

On CIFAR-100-LT. CIFAR-100 contains 100 categories
and 60,000 images (50,000 for training and 10,000 for val-
idation). Following [9], we manually split the long-tailed
versions of it with controllable degrees of data imbalance.

We follow the data augmentation strategy in [3]: ran-
domly crop a 32 x 32 patch from the original image or its

Table 1. Properties of long-tailed datasets. For CIFAR-100-LT, we
report results with different imbalance factors.

Dataset #Classes Imbalance Factor
CIFAR-100-LT 100 10, 50, 100
ImageNet-LT 1,000 256
iNaturalist2018 8,142 500

horizontal flip with 4 pixels padded on each side. ResNet-
32 [3] is used as the backbone network. Following [9], we
use stochastic gradient descent (SGD) to optimize networks
with momentum of 0.9, weight decay of 2 x 10~ for 200
epochs with batch size being 128. The initial learning rate
is 0.1 with first 5 epochs being linear warm-up, then de-
cayed at 120" and 160*" epochs by 0.01. In the proposed
DiVE method, we choose 7 = 3 with the power normaliza-
tion (p = 0.5), as well as « = 0.5 in all experiments on
CIFAR-100-LT.

On ImageNet-LT. It is a long-tailed version of Ima-
geNet, first used by [6]. It has 115.8K images from 1000
categories, with npn.,x = 1280 and npy, = 5.

To have fair comparisons, we use ResNeXt-50 [&] as
the backbone network in all experiments on ImageNet-LT.
We use the same data augmentation strategy as that in [6]
and [5]. In detail, images are firstly resized by setting
shorter side to 256, then we randomly take a 224 x 224 crop
from it or its horizontal flip, followed by color jittering. For
training strategies, we follow [5]. Both teacher and student
networks are trained for 90 epochs with batch size 512. The
initial learning rate is set to 0.2 and cosine decayed epoch
by epoch. Mini-batch stochastic gradient descent (SGD)
with momentum of 0.9, weight decay of 5 x 10~% is used
as our optimizer. In this dataset, power normalization is not
chosen in DiVE, and we set 7 = 9, o = 0.5.

On iNaturalist. The iNaturalist species classification
datasets are large-scale real-world datasets with severe
long-tail problems. iNaturalist2018 [ 1] contains 437.5K im-
ages from 8,412 categories, with 5 = 500. We adopt the
official training and validation split in our experiments.
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Figure 1. Accuracy (mean value and plus / minus 1 standard de-
viation) in “airplane” vs. “dog” binary classification experiments.
We take “airplane” as the head and “dog” as the tail categories.
The numbers in each sub-figure title are the number of samples in
the head and tail, respectively.

We use ResNet-50 [3] as the backbone network across
all experiments for iNaturalist2018. Standard data augmen-
tation strategies proposed in [2] are utilized. We train the
teacher and student networks both for 90 epochs with batch
size 256. The initial learning rate is set to 0.1, and decayed
following the cosine decay schedule. The optimizer is the
same as that used for ImageNet-LT. In DiVE, we set 7 = 2
with the power normalization (p = 0.5) and & = 0.5. Some
methods reported results trained with 200 epochs, hence we
also report DiVE results with 200 epochs.

Note that the training strategies of RIDE [7] are slightly
different from those standard long-tailed training strategies.
So, when comparing with RIDE [7], we follow experimen-
tal settings in [7]. For implementation details of RIDE-
DiVE, we adopt BSCE to train a 6 experts RIDE in place
of LDAM. Then we distill the virtual examples to each ex-
pert of a 4 experts student network using Eqn. (15) in our
main paper, and train the expert assignment module finally.
We normalize the feature and classifier weights of student
network for fair comparison.

In addition, we set « to 0.75 in all experiments, and set
7 = 3 in ImageNet-LT for RIDE-DiVE because the teacher
networks provide more reliable predictions.

C. Results on various shifted test label distri-
butions

Recently, [4] proposed a more realistic evaluation proto-
col, they evaluated models on a range of target label distri-
butions, including two types, Forward and Backward. For
the Forward type, the target label distribution becomes sim-
ilar to the source label distribution when the imbalance fac-
tor increases. The order is flipped for the Backward type.
Please refer to [4] for more details.

Follow [4], we evaluate CE, BSCE and DiVE trained for
90 epochs on test time shifted ImageNet-LT, the results are
in Table 2. Here PC means injecting target label distribution
information to the final output. Knowing the target label
distribution or not, DiVE surpass CE and BSCE by a large
margin.

D. t-SNE visualization

We use the t-SNE method to visualize the embedding
space on CIFAR100-LT (8 = 100). We aggregate the
classes into ten groups, based on the order of the number
of examples from head to tail, and sample one class from
each group for visualization. Results are in Fig. 2. In CE
(cross entropy), the feature embedding is dispersed for both
head and tail, making it hard to distinguish classes of similar
appearance (e.g., “mouse” and “squirrel”’). DiVE enlarges
the inter-class variance while reduces the intra-class vari-
ance for both head and tail (e.g., features of “mouse” and
“squirrel” are more compact and easier to separate). And,
RIDE-DiVE is better than both.

E. Sample images visualization

In Fig. 3, we visualize some sample images in ImageNet-
LT test set, comparing the predictions of CE, BSCE and
DiVE. We choose samples on which DiVE’s predictions are
correct, to show how dose DiVE correct the predictions.

DiVE can correct the predictions not only to semanti-
cally “nearby” categories (e.g., the “Polyporus frondosus”



Table 2. Top-1 accuracy over all classes on test time shifted ImageNet-LT. All models are trained for 90 epochs.

Dataset Forward Uniform Backward

Imbalance factor 50 25 10 5 2 1 2 5 10 25 50
CE 61.67 59.48 56.01 52.84 48.07 43.89 39.66 3435 30.70 26.54 23.95
BSCE 59.46 58.51 56.64 5494 5250 50.48 4824 529 4318 40.89 39.31
DiVE 62.61 61.44 59.73 58.06 55.40 53.10 50.88 47.87 45.69 43.17 41.55
PC CE 61.91 59.80 56.60 54.39 51.39 49.33 4771 46.20 4557 45.03 4541
PC BSCE 63.31 61.32 58.16 5572 52.55 50.48 48.73 4748 46.81 46.74 47.09
PC DiVE 65.82 63.56 60.70 58.38 55.17 53.10 51.39 49.97 4942 49.15 49.29

example and the “Siberian husky” example in Fig. 3), but

also to semantically “far” categories (e.g., the “pot” exam- *  apple
ple and the “ski mask” example in Fig. 3). : :ﬁ:‘r
¢ dolphin
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(c) RIDE-DiVE

Figure 2. t-SNE visualization of different models’ embedding
space on CIFAR100-LT (8 = 100).



CE: wreck assault rifle coral fungus

BSCE: pier cuirass mushroom
DiVE: pirate ship chainsaw Polyporus frondosus
CE: Ibizan hound pitcher folding chair
BSCE: Eskimo dog banana plunger
DiVE: Siberian husky pot ski mask

Figure 3. Some sample images in ImageNet-LT test set with pre-
dictions from CE, BSCE and DiVE. Below each image are the
predicted categories from CE, BSCE and DiVE on it. Categories
in blue are “Many”’, categories in yellow are “Medium”, while cat-
egories in red are “Few”. DiVE’s predictions are also ground-truth
labels.



