
Appendix A for EigenGAN

In Sec. 1-8, we derive the analytical result of maximum likelihood estimation (MLE)
for the linear case of the proposed EigenGAN. Sec. 8 discusses the MLE result and the
relation among the linear EigenGAN, the Principal Component Analysis (PCA) [1],
and the Probabilistic PCA [2].

1. The Likelihood

The linear EigenGAN relates a d-dimension observation vector x to a corresponding
q-dimension (q ≤ d) latent variables z by an affine transform UL and a translation µ,
which is formulated as

x = ULz + µ + σε, (1)

with constraints:

z ∼ Nq (0, I) , (2)
ε ∼ Nd (0, I) , independent of z, (3)

UTU = I,U is of size d× q, (4)
L is a q × q diagonal matrix. (5)

The noise vector ε in Eq. (1) is introduced to compensate the missing energy (missing
rank) since the rank of the latent variables is no more than the rank of the observation
(q ≤ d). According to Eq. (1)-(3), the probability density function of x is

px (x) =
1√

(2π)d |C|
exp

(
−1

2
(x− µ)T C−1 (x− µ)

)
, (6)

where

C = UL2UT + σ2I, (7)

C−1 = UMUT + σ−2I, (8)

M =
(
L2 + σ2I

)−1 − σ−2I. (9)
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Then for n observations {x}ni=1, the log-likelihood is

L1 = −n
2

{
d log 2π + log |C|+ 1

n

n∑
i=1

(xi − µ)T C−1 (xi − µ)

}
. (10)

According to Eq. (7), only the square value of L affects the probability density func-
tion, therefore we can assume the elements of L to be non-negative. Further, for conve-
nience of the following analysis, without loss of generality, we organize L by grouping
and sorting it by the value of the diagonal elements:

L = diag
(
l1Id1, l2Id2, · · · , lpIdp

)
, (11)

where l1 > l2 > · · · > lp ≥ 0; Idj denotes a dj × dj identity matrix, dj 6= 0, and
d1 + d2 + · · ·+ dp = q. According to Eq. (9) and (11), M also has a grouped form:

M = diag
(((

l21 + σ2
)−1 − σ−2)Id1, · · · , ((l2p + σ2

)−1 − σ−2)Idp) . (12)

And we can also define a block form of U accordingly:

U = [U1,U2, · · · ,Up] , (13)

where Ui is of size d× di.

2. Determination of µ

The partial derivative of the log-likelihood L1 (10) with respect to µ is

∂L1

∂µ
=

n∑
i=1

C−1 (xi − µ) . (14)

Then the stationary point is

µ =
1

n

n∑
i=1

xi = x̄. (15)

Since L1 is a concave function of µ, the above stationary point is also the global max-
imum point.
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3. Determination of U: Part (1)

Substituting Eq. (15) into the log-likelihood L1 (10), we obtain a new objective:

L2 = −n
2

{
d log 2π + log |C|+ tr

(
SC−1

)}
, (16)

where

S =
1

n

n∑
i=1

(xi − x̄) (xi − x̄)T , (17)

i.e., the covariance matrix of the data. According to Eq. (4), the maximization of
L2 (16) with respect to U is a constrained optimization as below:

max
U

L2

subject to UTU = I

Introducing the Lagrange multiplier H, the Lagrangian function is

LU = L2 + tr
(
HT
(
UTU− I

))
= −n

2

{
d log 2π + log |C|+ tr

(
SC−1

)}
+ tr

(
HT
(
UTU− I

))
. (18)

Then the partial derivative of LU with respect to U is

∂LU

∂U
= −n

{
U

((
L2 + σ2I

)−1
L2 +

H + HT

2

)
+ SUM

}
. (19)

At the stationary point,

SUM = −U

((
L2 + σ2I

)−1
L2 +

H + HT

2

)
. (20)

Left multiplying the above equation by UT and using UTU = I, we obtain

UTSUM = −
(
L2 + σ2I

)−1
L2 − H + HT

2
. (21)

The right-hand side of above equation is a symmetric matrix, therefore the left-hand
side UTSUM is also symmetric. Furthermore, since both UTSU and M are also sym-
metric, to satisfy the symmetry of UTSUM, according to the form of M in Eq. (12),
UTSU must have a similar block diagonal form:

UTSU = diag (A1,A2, · · · ,Ap) (22)

= diag
(
QT

1 Λ1Q1,Q
T
2 Λ2Q2, · · · ,QT

p ΛpQp

)
, (23)
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where Aj is a dj × dj symmetric matrix, and QT
j ΛjQj is the eigendecomposition of

Aj. Using Eq. (20), (21), and (23), we can derive

SUM = U · diag
(
QT

1 Λ1Q1,Q
T
2 Λ2Q2, · · · ,QT

p ΛpQp

)
·M. (24)

Substituting Eq. (12) and (13) into Eq. (24), we obtain((
l2j + σ2

)−1 − σ−2)SUjQ
T
j =

((
l2j + σ2

)−1 − σ−2)UjQ
T
j Λj (25)

=⇒ SUjQ
T
j = UjQ

T
j Λj, j = 1, 2, · · · , p′, (26)

where

p′ =

{
p, lp > 0,

p− 1, lp = 0.
(27)

Eq. (26) tells us that, the columns of UjQ
T
j are eigenvectors of S, and the diagonal

elements of Λj are the corresponding eigenvalues. Further, since
(
UjQ

T
j

)T
UjQ

T
j = I,

these eigenvectors are orthonormal. Let Vj = UjQ
T
j , we obtain the stationary point:

Uj = VjQj, j = 1, 2, · · · , p′, (28)

where the columns of Vj are orthonormal eigenvectors of S with corresponding eigen-
values as Λj = diag

(
λj1, λj2, · · · , λjdj

)
, and Qj is an arbitrary orthogonal matrix.

Note that if p′ = p− 1, i.e., lp = 0, Up is an arbitrary matrix.

4. Determination of L = diag
(
l1Id1, l2Id2, · · · , lpIdp

)
Substituting Eq. (26), Eq. (7)-(8), and Eq. (11)-(12) into L2 (16) and after some

manipulation, a new objective is derived:

L3 = −n
2

{
d log 2π +

p′∑
j=1

[
dj log

(
l2j + σ2

)
+
(
l2j + σ2

)−1 tr (Λj)
]

+(d− q′) log σ2 + σ−2
(

tr (S)−
p′∑
j=1

tr (Λj)
)}

, (29)

where

q′ =

p′∑
j=1

dj. (30)
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Then the partial derivative of L3 with respect to lj is

∂L3

∂lj
= −n

{
djlj

l2j + σ2
− ljtr (Λj)

(l2j + σ2)2

}
, j = 1, 2, · · · , p′, (31)

and the stationary point is

l2j =
tr (Λj)

dj
− σ2, j = 1, 2, · · · , p′. (32)

5. Determination of σ

Substituting Eq. (32) into L3 (29), we obtain a new objective:

L4 = −n
2

{
d log 2π +

p′∑
j=1

[
dj log

tr (Λj)

dj
+ dj

]

+(d− q′) log σ2 + σ−2
(

tr (S)−
p′∑
j=1

tr (Λj)

)}
. (33)

Then the partial derivative of L4 with respect to σ is

∂L4

∂σ
= −n

d− q′σ
− 1

σ3

tr (S)−
p′∑
j=1

tr (Λj)

 , (34)

and the stationary point is

σ2 =

tr (S)−
p′∑
j=1

tr (Λj)

d− q′
. (35)

6. Determination of Λj

Substituting Eq. (35) into L4 (33), we obtain a new objective:

L5 = −n
2

d log 2π +

p′∑
j=1

dj log
tr (Λj)

dj
+ (d− q′) log

tr (S)−
p′∑
j=1

tr (Λj)

d− q′
+ d

.(36)
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According to Sec. 3, the diagonal elements of Λj = diag
(
λj1, λj2, · · · , λjdj

)
, j =

1, · · · , p′ are the eigenvalues of S, therefore the problem here is to select the suitable
eigenvalues from S and separate them into different Λjs to maximize L5 (36). Using
Jensen’s inequality:

log
tr (Λj)

dj
= log

λj1 + · · ·+ λjdj
dj

≥
log λj1 + · · ·+ log λjdj

dj
, (37)

and the equality holds if and only if λj1 = · · · = λjdj . That means, no matter how we
select the eigenvalues, only grouping them by the same values can maximize L5 (36).
Therefore the optimal grouping is

Λj = diag
(
λj1, λj2, · · · , λjdj

)
= diag (λj, λj, · · · , λj)
= λjIdj , (38)

where λj is an eigenvalue of S whose algebraic multiplicity ≥ dj.

Now, the left problem is to select the eigenvalues λj, j = 1, · · · , p′. Substituting
Eq. (38) into L5 (36), we obtain

L6 = −n
2

d log 2π +

p′∑
j=1

dj log λj + (d− q′) log

tr (S)−
p′∑
j=1

tr (Λj)

d− q′
+ d


= −n

2

d log 2π + tr (log S)−
d∑

i=q′+1

log γi + (d− q′) log

d∑
i=q′+1

γi

d− q′
+ d


= −n

2

d log 2π + tr (log S)− (d− q′)


d∑

i=q′+1

log γi

d− q′
− log

d∑
i=q′+1

γi

d− q′

+ d

,(39)

where q′ = d1 + d2 + · · · + dp′ and γi, i = q′ + 1, · · · , d are the rest eigenvalues not
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been selected. Maximizing L6 (39) requires maximizing

F =

d∑
i=q′+1

log γi

d− q′
− log

d∑
i=q′+1

γi

d− q′
, (40)

which only requires γi, i = q′ + 1, · · · , d to be adjacent in ordered eigenvalues. How-
ever according to Eq. (32), we need λj > σ2, j = 1, · · · , p′, and then from Eq. (35),
the only choice to maximize F is to let γi, i = q′ + 1, · · · , d be the d − q′ smallest
eigenvalues. Meanwhile, lager q′ leads to larger F , therefore,

p′ = p (41)

q′ = q =

p∑
j=1

dj (42)

7. Determination of U: Part (2)

According to Eq. (28) and Eq. (38), the columns of Vj are orthonormal eigenvectors
of S corresponding to a same eigenvalue λj. Since Qj is an arbitrary orthogonal matrix,
the column of Uj = VjQj are still orthonormal eigenvectors corresponding to the
eigenvalue λj.

8. Summary and Discussion

Summarizing the above analysis (Eq. (15), (32), (35), and Sec. 7), the global maxi-
mum of the likelihood with respect to the model parameters is

µ =
1

n

n∑
i=1

xi, (43)

σ2 =
tr (S)− tr (Λ)

d− q
, (44)

L2 = Λ− σ2I, (45)
U = [u1, · · · ,uq] , (46)

where the elements of the diagonal matrix Λ is the q largest eigenvalues of the data
covariance S, and u1, · · · ,uq are the principal q eigenvectors corresponding to Λ. As
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can be seen, under maximum likelihood estimation, the basis vectors U of our linear
model are exactly the same as that learned by PCA [1]. Moreover, diagonal elements of
L represent the “importance” or “energy” of the corresponding basis vectors, and from
Eq. (45), when σ → 0, the elements of L2 approach the q largest eigenvalues. Besides,
as shown in Eq. (44), energy (σ2) of the noise is the average of the discard eigenvalues,
which exactly compensates the energy missed by the subspace model.

Our model can be viewed as constrained case of Probabilistic PCA (PPCA) [2]:

x = Wz + µ + σε, (47)

whose maximum likelihood estimation is

W = V
(
Λ− σ2I

) 1
2 Q, (48)

where the columns of V are the principal eigenvectors of the data covariance, Λ is a
diagonal matrix whose elements are the corresponding eigenvalues, Q is an arbitrary
orthogonal matrix. Therefore, MLE result of PPCA is nondeterministic due to the arbi-
trary Q. Although W contains information of the principal eigenvectors, the columns
of W itself do not show explicit property of the orthogonality. Our model (1) restricts
W of PPCA (47) to the special form of UL where U has orthonormal columns and L
is diagonal matrix. In consequence, MLE result of our model is deterministic (Eq. (43)-
(46)). Moreover, our model can build a linear subspace with the principal eigenvectors
as the basis vectors explicitly, which is very suitable for extension to the nonlinear case
to learn layer-wise interpretable dimensions, as introduced in the main text.
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