
Enhanced Boundary Learning for Glass-like Object Segmentation
Supplementary Material

Hao He1,2∗, Xiangtai Li3∗, Guangliang Cheng4,6, Jianping Shi4,
Yunhai Tong3, Gaofeng Meng1,2,5, Véronique Prinet1, LuBin Weng1,

1 National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
2 School of Artificial Intelligence, University of Chinese Academy of Sciences, 3 Key Laboratory of Machine Perception (MOE), Peking University

4 SenseTime Group Research 5 Centre for Artificial Intelligence and Robotics, HK Institute of Science & Innovation, CAS 6 Shanghai AI Lab

Email: hehao2019@ia.ac.cn, lxtpku@pku.edu.cn

Overview This supplementary file mainly contains two
parts. In the first part, we provide more experimental analy-
sis on RDM, PGM and cascade decoder as the supplemen-
tary of our experiment section in the main paper. Follow-
ing [22], we also report more detailed results in Trans10k
benchmark. Then we give the implementation details of
Cityscapes [4], BDD [27], and COCO Stuff [1]. For the
second part, we present more visualization results on three
glass-like datasets [22, 25, 13].

1. More analysis experiments
In this section, we provide several supplementary exper-

iments for main paper.
Visual Comparison on Boundary Results: Fig. 1 gives
some boundary segmentation results on Trans10k test set.
There are three different scenes, pictures of the first two
rows contain different things object, the third and the fourth
rows show a scene that the dividing line between two glass-
like object is thin and hard to detection, the last two rows
show a scene that the information inside the mirror is com-
plex. In these three challenging scenes, boundary results
of our method is much better than the boundary detection
method: HED [23] and the transparent object segmentation
method: Translab [22].
Effectiveness of RDM on Boundary Prediction: We show
more effective evidence on RDM. We first demonstrate
more visual examples on Fedge in Fig. 2. Compared to the
main paper, we also visualize the predicted mask bound-
ary comparison with the model trained with and without
residual supervision. As shown in the Fig. 2, our differen-
tial design leads to thinner feature representation and better
boundary results.
Experiments on Various Backbone: We perform ex-
periments on various backbones including light-weight

∗Equal Contribution. Corresponding to: LuBin Weng, Guangliang
Cheng

BackBone mIoU ↑ mBER ↓ MAE ↓
ResNet18 82.8 8.01 0.088
+our module 87.7 5.18 0.064
ResNet101 87.5 7.78 0.064
+our module 91.1 3.79 0.043

Table 1: Comparison of DeeplabV3+ and our method us-
ing resnet18 and resnet101 as backbone network. Our
method can achieve significant improvement on different
backbones.

Settings mIoU ↑ mBER ↓ MAE ↓
1(w/o cascade) 89.4 4.59 0.053
2 90.2 4.19 0.050
3 90.7 3.97 0.047
4 89.7 4.57 0.053

Table 2: Influence of the number of cascade stage.

Method mIoU↑ mBER↓ mAE↓
Deeplabv3+(baseline) 85.4 6.73 0.075

PointRend [8] 88.2 4.86 0.060
Translab [22] 88.9 4.91 0.056
GSCNN [17] 88.2 5.10 0.059

EBLNet 89.5 4.54 0.051

Table 3: Comparison results with related methods on
Trans10k validation set. All the models are trained in the
same setting and tested with a single scale inference on the
Trans10k validation set.

ResNet18 and heavy ResNet101 in Tab. 1 where we use
DeeplaV3+ based EBLNet. On the ResNet18 backbone,
our method results in a significant gain over the baseline
by 4.9% mIoU. On the strong baseline with ResNet101, our
method results in a 3.6% mIoU gain.



Figure 1: Visualization and comparison results of boundary on Trans10k test set.

Ablation on Number of Cascade Stage: We verify the
number of cascade stages in Tab. 2. Appending more mod-
ules with more refined features leads to better results shown
in the first 3 rows. After appending 4 modules, there ex-
ists a slight decrease. We argue that involving over-loaded
low-level features weakens the semantic meaning and thus
we set cascade number to 3 by default. To make the net-
work architecture easier to understand, we give the network
architecture using only one RDM and one PGM in Fig. 3.
Ablation on our PGM: We carry the effect of points num-
ber experiments in Fig. 4 where the Deeplabv3+ with 3 cas-
caded stages as base module. As shown in Fig. 4, the sam-
pled point number is set to 96 according to the mIoU metric
for the best trade-off between accuracy and computation.
When sampling more points, the performance slightly drop.
We argue that more points leads to redundant representation
of boundaries and makes the learning of affinity unbalanced

and difficult. Thus it degrades to the case as DANet [5] in
Fig.4 (a) of the main paper.
Comparison with related methods: We select three repre-
sentative works on segmentation boundary learning [17, 8,
22]. We use DeeplabV3+ with ResNet50 backbone as the
baseline model for comparison. As shown in Tab. 3, our
method achieves better results than those works on three
metrics with only one RDM and one PGM involved.
Detailed results on Trans10k: We give the detailed results
following the split of Trans10k benchmark [22] in Tab. 4 for
further reference.
Implementation details on Cityscapes, BDD, and COCO
Stuff: All networks are trained with the same setting, where
stochastic gradient descent (SGD) with a batch size of 8
is used as the optimizer, with the momentum of 0.9, the
weight decay of 5e − 4. The ‘poly’ learning rate pol-
icy is adopted to decay the initial learning rate by multi-



plying (1 − iter
total iter )

0.9 during training. Data augmenta-
tion contains random horizontal flip, random resize with
the scale range of [0.5, 2.0], and random crop with size
800×800, 800×800, 512×512 for Cityscapes, BDD, and
COCO Stuff datasets, respectively. We use ResNet-50 and
ResNet-101 [6] as the backbones. Additionally, we re-
implement the state-of-the-arts [3, 8] for fairness. We train
100 epochs, 100 epochs, and 60 epochs for Cityscapes,
BDD, and COCO Stuff dataset, respectively and report re-
sults on validation datasets using single scale test. We port
the PointRend [8] implementation from Detectron2 [21]
codebase and then are trained under our settings.

2. More visualization results

In this section, we present more visual results on the
datasets [13, 22, 25] in the main paper.
Effectiveness of PGM on boundary prediction: We pro-
vide more visualization results on PGM in Fig. 5 where our
PGM refines the object boundaries and obtains more con-
sistent results. For example, the bottom of glass in the first
row(right) is refined into the consistent shape.
More visualization results on Trans10k: Fig. 6 provides
more visualization results on Trans10k dataset. Compared
with current state-of-the-art methods [3, 8, 22], our methods
achieve better results.
More visualization results on GDD and MSD: Fig. 7
shows more visualization results on MSD (top) and
GDD (bottom) dataset.

References
[1] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-

stuff: Thing and stuff classes in context. In CVPR, 2018.
1

[2] Ping Chao, Chao-Yang Kao, Yu-Shan Ruan, Chien-Hsiang
Huang, and Youn-Long Lin. Hardnet: A low memory traffic
network. In ICCV, pages 3552–3561, 2019. 7

[3] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
ECCV, 2018. 3, 7

[4] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In CVPR,
2016. 1

[5] Jun Fu, Jing Liu, Haijie Tian, Zhiwei Fang, and Hanqing Lu.
Dual attention network for scene segmentation. In CVPR,
2019. 2

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 3

[7] Qiangguo Jin, Zhaopeng Meng, Tuan D Pham, Qi Chen,
Leyi Wei, and Ran Su. Dunet: A deformable network

for retinal vessel segmentation. Knowledge-Based Systems,
178:149–162, 2019. 7

[8] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Gir-
shick. PointRend: Image segmentation as rendering. In
CVPR, 2020. 1, 2, 3

[9] Gen Li, Inyoung Yun, Jonghyun Kim, and Joongkyu Kim.
Dabnet: Depth-wise asymmetric bottleneck for real-time
semantic segmentation. arXiv preprint arXiv:1907.11357,
2019. 7

[10] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian D.
Reid. Refinenet: Multi-path refinement networks for high-
resolution semantic segmentation. In CVPR, 2017. 7

[11] Mengyu Liu and Hujun Yin. Feature pyramid encoding net-
work for real-time semantic segmentation. arXiv preprint
arXiv:1909.08599, 2019. 7

[12] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In
CVPR, 2015. 7

[13] Haiyang Mei, Xin Yang, Yang Wang, Yuanyuan Liu,
Shengfeng He, Qiang Zhang, Xiaopeng Wei, and Ryn-
son W.H. Lau. Don’t hit me! glass detection in real-world
scenes. In CVPR, 2020. 1, 3, 9

[14] Rudra PK Poudel, Ujwal Bonde, Stephan Liwicki, and
Christopher Zach. Contextnet: Exploring context and de-
tail for semantic segmentation in real-time. arXiv preprint
arXiv:1805.04554, 2018. 7

[15] Rudra PK Poudel, Stephan Liwicki, and Roberto Cipolla.
Fast-scnn: Fast semantic segmentation network. arXiv
preprint arXiv:1902.04502, 2019. 7

[16] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
MICCAI, 2015. 7

[17] Towaki Takikawa, David Acuna, Varun Jampani, and Sanja
Fidler. Gated-scnn: Gated shape cnns for semantic segmen-
tation. ICCV, 2019. 1, 2

[18] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, et al. Deep high-resolution represen-
tation learning for visual recognition. PAMI, 2020. 7

[19] Yu Wang, Quan Zhou, Jia Liu, Jian Xiong, Guangwei Gao,
Xiaofu Wu, and Longin Jan Latecki. Lednet: A lightweight
encoder-decoder network for real-time semantic segmenta-
tion. In ICIP, pages 1860–1864. IEEE, 2019. 7

[20] Tianyi Wu, Sheng Tang, Rui Zhang, and Yongdong Zhang.
Cgnet: A light-weight context guided network for semantic
segmentation. arXiv preprint arXiv:1811.08201, 2018. 7

[21] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019. 3

[22] Enze Xie, Wenjia Wang, Wenhai Wang, Mingyu Ding,
Chunhua Shen, and Ping Luo. Segmenting transparent ob-
jects in the wild. ECCV, 2020. 1, 2, 3, 7

[23] Saining Xie and Zhuowen Tu. Holistically-nested edge de-
tection. In ICCV, 2015. 1

[24] Maoke Yang, Kun Yu, Chi Zhang, Zhiwei Li, and Kuiyuan
Yang. Denseaspp for semantic segmentation in street scenes.
In CVPR, 2018. 7



[25] Xin Yang, Haiyang Mei, Ke Xu, Xiaopeng Wei, Baocai Yin,
and Rynson WH Lau. Where is my mirror? In ICCV, 2019.
1, 3, 9

[26] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao,
Gang Yu, and Nong Sang. Bisenet: Bilateral segmenta-
tion network for real-time semantic segmentation. In ECCV,
2018. 7

[27] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying
Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Dar-
rell. Bdd100k: A diverse driving dataset for heterogeneous
multitask learning. In CVPR, 2020. 1

[28] Yuhui Yuan and Jingdong Wang. Ocnet: Object context net-
work for scene parsing. arXiv preprint, 2018. 7

[29] Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping
Shi, and Jiaya Jia. Icnet for real-time semantic segmentation
on high-resolution images. In ECCV, 2018. 7

[30] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In
CVPR, 2017. 7



Figure 2: More visualization results on RDM with boundary comparison. Best view it on screen.



Figure 3: Network architecture without using cascade structure.

90

90.7

90.2

89.8
89.7

89.2
89.4
89.6
89.8
90

90.2
90.4
90.6
90.8

64 96 128 192 256

m
Io
U
(%
)

Number of Sampling Points

Effect of Sampling Points

Figure 4: Influence of the number of sampled points in the PGM.



Figure 5: More visualization results on PGM. The boundary are refined by our efficient PGM module. The first four rows are
thing classes while the last four rows are stuff classes in Trans10k [22]. Best view it on screen.

Method MAE ↓ Acc ↑ mIoU ↑ mBER ↓
All Easy Hard All Easy Hard All Easy Hard All Easy Hard

FPENet [11] 0.339 0.297 0.492 24.73 26.50 19.19 34.17 36.82 24.41 39.31 37.88 44.03
ContextNet [14] 0.217 0.171 0.386 62.09 67.14 46.34 56.46 61.73 37.71 22.36 18.77 34.44
FastSCNN [15] 0.206 0.161 0.373 64.20 69.42 48.01 59.18 64.63 40.27 22.27 18.74 34.22
Deeplabv3+MBv2 [3] 0.130 0.091 0.275 80.92 85.90 65.43 75.27 80.55 56.17 12.49 9.08 24.47
CGNet [20] 0.216 0.173 0.379 59.15 64.57 42.26 57.31 62.41 39.56 22.95 19.67 34.33
HRNet [18] 0.134 0.092 0.291 75.82 82.17 56.04 74.56 80.43 53.42 13.52 9.95 26.17
HardNet [2] 0.184 0.141 0.345 69.17 73.83 54.67 64.03 69.11 46.18 18.91 15.58 30.52
DABNet [9] 0.230 0.187 0.391 54.87 59.29 41.07 54.90 59.45 38.77 25.71 22.63 36.15
LEDNet [19] 0.168 0.124 0.331 75.70 80.62 60.37 67.54 73.04 48.38 15.15 11.83 26.58
ICNet [29] 0.244 0.200 0.408 52.65 58.31 35.01 50.65 55.48 33.44 24.63 21.71 35.24
BiSeNet [26] 0.140 0.102 0.282 77.92 82.79 62.72 73.93 78.74 56.37 13.96 10.83 24.85
DenseAspp [24] 0.114 0.078 0.247 81.22 86.25 66.55 78.11 83.11 60.38 12.19 8.85 23.71
DeepLabv3+R50 [3] 0.081 0.050 0.194 89.54 93.22 78.07 84.54 89.09 69.04 7.78 4.91 17.27
FCN [12] 0.108 0.073 0.239 83.79 88.55 68.93 79.67 84.53 62.51 10.33 7.36 20.47
OCNet [28] 0.122 0.087 0.253 80.85 85.63 65.96 76.85 81.53 59.75 12.65 9.43 23.69
RefineNet [10] 0.180 0.135 0.345 57.97 64.53 37.53 66.03 71.41 45.71 22.22 19.01 34.06
DeepLabv3+XP65 [3] 0.082 0.051 0.195 89.18 92.61 78.51 84.26 88.87 68.34 8.00 5.16 17.44
DUNet [7] 0.140 0.100 0.289 77.84 83.41 60.50 74.06 79.19 55.53 13.19 9.93 25.01
UNet [16] 0.234 0.191 0.398 51.07 55.44 37.44 53.98 58.60 37.08 26.37 23.40 36.80
PSPNet [30] 0.093 0.062 0.211 86.25 90.41 73.28 82.38 86.79 66.35 9.72 6.67 20.08
Translab [22] 0.063 0.036 0.166 92.69 95.77 83.04 87.63 92.23 72.10 5.46 3.12 13.30
EBLNet(OS16) 0.052 0.029 0.140 93.95 96.68 85.44 89.58 93.68 75.54 4.60 2.50 11.49
EBLNet(OS8) 0.048 0.026 0.130 94.71 97.19 86.95 90.28 94.21 76.51 4.14 2.22 10.45

Table 4: Comparison on easy and hard samples in Trans10k dataset. Results are reported with single scale inputs. The bold
values in each column mean the best entries. OS means the output stride in backbone.



Figure 6: More visualization results on Trans10k datasets. Best view it on screen.



Figure 7: More visualization results on MSD and GDD datasets. The first three are on MSD [25] and the last three are on
GDD [13]. The first three rows of the 7th column are MirrorNet results, the last three rows of the 7th column are GDNet
results. Best view it on screen.


