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Overview This supplementary file mainly contains two
parts. In the first part, we provide more experimental analy-
sis on RDM, PGM and cascade decoder as the supplemen-
tary of our experiment section in the main paper. Follow-
ing [22], we also report more detailed results in Trans10k
benchmark. Then we give the implementation details of
Cityscapes [4], BDD [27], and COCO Stuff [1]. For the
second part, we present more visualization results on three
glass-like datasets [22, 25, 13].

1. More analysis experiments
In this section, we provide several supplementary exper-

iments for main paper.
Visual Comparison on Boundary Results: Fig. 1 gives
some boundary segmentation results on Trans10k test set.
There are three different scenes, pictures of the first two
rows contain different things object, the third and the fourth
rows show a scene that the dividing line between two glass-
like object is thin and hard to detection, the last two rows
show a scene that the information inside the mirror is com-
plex. In these three challenging scenes, boundary results
of our method is much better than the boundary detection
method: HED [23] and the transparent object segmentation
method: Translab [22].
Effectiveness of RDM on Boundary Prediction: We show
more effective evidence on RDM. We first demonstrate
more visual examples on Fedge in Fig. 2. Compared to the
main paper, we also visualize the predicted mask bound-
ary comparison with the model trained with and without
residual supervision. As shown in the Fig. 2, our differen-
tial design leads to thinner feature representation and better
boundary results.
Experiments on Various Backbone: We perform ex-
periments on various backbones including light-weight
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BackBone mIoU ↑ mBER ↓ MAE ↓
ResNet18 82.8 8.01 0.088
+our module 87.7 5.18 0.064
ResNet101 87.5 7.78 0.064
+our module 91.1 3.79 0.043

Table 1: Comparison of DeeplabV3+ and our method us-
ing resnet18 and resnet101 as backbone network. Our
method can achieve significant improvement on different
backbones.

Settings mIoU ↑ mBER ↓ MAE ↓
1(w/o cascade) 89.4 4.59 0.053
2 90.2 4.19 0.050
3 90.7 3.97 0.047
4 89.7 4.57 0.053

Table 2: Influence of the number of cascade stage.

Method mIoU↑ mBER↓ mAE↓
Deeplabv3+(baseline) 85.4 6.73 0.075

PointRend [8] 88.2 4.86 0.060
Translab [22] 88.9 4.91 0.056
GSCNN [17] 88.2 5.10 0.059

EBLNet 89.5 4.54 0.051

Table 3: Comparison results with related methods on
Trans10k validation set. All the models are trained in the
same setting and tested with a single scale inference on the
Trans10k validation set.

ResNet18 and heavy ResNet101 in Tab. 1 where we use
DeeplaV3+ based EBLNet. On the ResNet18 backbone,
our method results in a significant gain over the baseline
by 4.9% mIoU. On the strong baseline with ResNet101, our
method results in a 3.6% mIoU gain.



Figure 1: Visualization and comparison results of boundary on Trans10k test set.

Ablation on Number of Cascade Stage: We verify the
number of cascade stages in Tab. 2. Appending more mod-
ules with more refined features leads to better results shown
in the first 3 rows. After appending 4 modules, there ex-
ists a slight decrease. We argue that involving over-loaded
low-level features weakens the semantic meaning and thus
we set cascade number to 3 by default. To make the net-
work architecture easier to understand, we give the network
architecture using only one RDM and one PGM in Fig. 3.
Ablation on our PGM: We carry the effect of points num-
ber experiments in Fig. 4 where the Deeplabv3+ with 3 cas-
caded stages as base module. As shown in Fig. 4, the sam-
pled point number is set to 96 according to the mIoU metric
for the best trade-off between accuracy and computation.
When sampling more points, the performance slightly drop.
We argue that more points leads to redundant representation
of boundaries and makes the learning of affinity unbalanced

and difficult. Thus it degrades to the case as DANet [5] in
Fig.4 (a) of the main paper.
Comparison with related methods: We select three repre-
sentative works on segmentation boundary learning [17, 8,
22]. We use DeeplabV3+ with ResNet50 backbone as the
baseline model for comparison. As shown in Tab. 3, our
method achieves better results than those works on three
metrics with only one RDM and one PGM involved.
Detailed results on Trans10k: We give the detailed results
following the split of Trans10k benchmark [22] in Tab. 4 for
further reference.
Implementation details on Cityscapes, BDD, and COCO
Stuff: All networks are trained with the same setting, where
stochastic gradient descent (SGD) with a batch size of 8
is used as the optimizer, with the momentum of 0.9, the
weight decay of 5e − 4. The ‘poly’ learning rate pol-
icy is adopted to decay the initial learning rate by multi-



plying (1 − iter
total iter )

0.9 during training. Data augmenta-
tion contains random horizontal flip, random resize with
the scale range of [0.5, 2.0], and random crop with size
800×800, 800×800, 512×512 for Cityscapes, BDD, and
COCO Stuff datasets, respectively. We use ResNet-50 and
ResNet-101 [6] as the backbones. Additionally, we re-
implement the state-of-the-arts [3, 8] for fairness. We train
100 epochs, 100 epochs, and 60 epochs for Cityscapes,
BDD, and COCO Stuff dataset, respectively and report re-
sults on validation datasets using single scale test. We port
the PointRend [8] implementation from Detectron2 [21]
codebase and then are trained under our settings.

2. More visualization results

In this section, we present more visual results on the
datasets [13, 22, 25] in the main paper.
Effectiveness of PGM on boundary prediction: We pro-
vide more visualization results on PGM in Fig. 5 where our
PGM refines the object boundaries and obtains more con-
sistent results. For example, the bottom of glass in the first
row(right) is refined into the consistent shape.
More visualization results on Trans10k: Fig. 6 provides
more visualization results on Trans10k dataset. Compared
with current state-of-the-art methods [3, 8, 22], our methods
achieve better results.
More visualization results on GDD and MSD: Fig. 7
shows more visualization results on MSD (top) and
GDD (bottom) dataset.
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Figure 2: More visualization results on RDM with boundary comparison. Best view it on screen.



Figure 3: Network architecture without using cascade structure.
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Figure 4: Influence of the number of sampled points in the PGM.



Figure 5: More visualization results on PGM. The boundary are refined by our efficient PGM module. The first four rows are
thing classes while the last four rows are stuff classes in Trans10k [22]. Best view it on screen.

Method MAE ↓ Acc ↑ mIoU ↑ mBER ↓
All Easy Hard All Easy Hard All Easy Hard All Easy Hard

FPENet [11] 0.339 0.297 0.492 24.73 26.50 19.19 34.17 36.82 24.41 39.31 37.88 44.03
ContextNet [14] 0.217 0.171 0.386 62.09 67.14 46.34 56.46 61.73 37.71 22.36 18.77 34.44
FastSCNN [15] 0.206 0.161 0.373 64.20 69.42 48.01 59.18 64.63 40.27 22.27 18.74 34.22
Deeplabv3+MBv2 [3] 0.130 0.091 0.275 80.92 85.90 65.43 75.27 80.55 56.17 12.49 9.08 24.47
CGNet [20] 0.216 0.173 0.379 59.15 64.57 42.26 57.31 62.41 39.56 22.95 19.67 34.33
HRNet [18] 0.134 0.092 0.291 75.82 82.17 56.04 74.56 80.43 53.42 13.52 9.95 26.17
HardNet [2] 0.184 0.141 0.345 69.17 73.83 54.67 64.03 69.11 46.18 18.91 15.58 30.52
DABNet [9] 0.230 0.187 0.391 54.87 59.29 41.07 54.90 59.45 38.77 25.71 22.63 36.15
LEDNet [19] 0.168 0.124 0.331 75.70 80.62 60.37 67.54 73.04 48.38 15.15 11.83 26.58
ICNet [29] 0.244 0.200 0.408 52.65 58.31 35.01 50.65 55.48 33.44 24.63 21.71 35.24
BiSeNet [26] 0.140 0.102 0.282 77.92 82.79 62.72 73.93 78.74 56.37 13.96 10.83 24.85
DenseAspp [24] 0.114 0.078 0.247 81.22 86.25 66.55 78.11 83.11 60.38 12.19 8.85 23.71
DeepLabv3+R50 [3] 0.081 0.050 0.194 89.54 93.22 78.07 84.54 89.09 69.04 7.78 4.91 17.27
FCN [12] 0.108 0.073 0.239 83.79 88.55 68.93 79.67 84.53 62.51 10.33 7.36 20.47
OCNet [28] 0.122 0.087 0.253 80.85 85.63 65.96 76.85 81.53 59.75 12.65 9.43 23.69
RefineNet [10] 0.180 0.135 0.345 57.97 64.53 37.53 66.03 71.41 45.71 22.22 19.01 34.06
DeepLabv3+XP65 [3] 0.082 0.051 0.195 89.18 92.61 78.51 84.26 88.87 68.34 8.00 5.16 17.44
DUNet [7] 0.140 0.100 0.289 77.84 83.41 60.50 74.06 79.19 55.53 13.19 9.93 25.01
UNet [16] 0.234 0.191 0.398 51.07 55.44 37.44 53.98 58.60 37.08 26.37 23.40 36.80
PSPNet [30] 0.093 0.062 0.211 86.25 90.41 73.28 82.38 86.79 66.35 9.72 6.67 20.08
Translab [22] 0.063 0.036 0.166 92.69 95.77 83.04 87.63 92.23 72.10 5.46 3.12 13.30
EBLNet(OS16) 0.052 0.029 0.140 93.95 96.68 85.44 89.58 93.68 75.54 4.60 2.50 11.49
EBLNet(OS8) 0.048 0.026 0.130 94.71 97.19 86.95 90.28 94.21 76.51 4.14 2.22 10.45

Table 4: Comparison on easy and hard samples in Trans10k dataset. Results are reported with single scale inputs. The bold
values in each column mean the best entries. OS means the output stride in backbone.



Figure 6: More visualization results on Trans10k datasets. Best view it on screen.



Figure 7: More visualization results on MSD and GDD datasets. The first three are on MSD [25] and the last three are on
GDD [13]. The first three rows of the 7th column are MirrorNet results, the last three rows of the 7th column are GDNet
results. Best view it on screen.


