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Outline
In this supplementary file, we first provide more results

on Cityscapes in Sec. S1: parameter analysis in Sec. S1.1
to investigate the effects of labeling ratio and data augmen-
tation magnitude; explanation of our consideration for data
augmentation in the progressive strategy in Sec. S1.2; vi-
sualizations of pseudo labels generated by different meth-
ods in Sec. S1.3; the qualitative results of different meth-
ods in Sec. S1.4. Moreover, we provide additional experi-
mental results for the semi-supervised settings on the Scan-
Net dataset [1] in Sec. S2 to further explore the effective-
ness of the proposed method on indoor scene segmenta-
tion. Finally, in Sec. S3, we explore the importance of re-
distributing biased pseudo labels by distribution aligning for
unsupervised domain adaptation (UDA) on the GTA5 [7] →
Cityscapes setting.

S1. More Results on Cityscapes

S1.1. Parameter Analysis

Labeling Ratio. Benefited from an improved teacher
model, progressively enlarging labeling ratio α can help in-
duce novel data while maintaining the quality of pseudo
labels, and hence safely bootstrap the performance. Here,
we present more experimental results and analysis on the
Cityscapes split 1/8 at round k=2 to show the improvements
from an enlarging labeling ratio.

α (%) mIoU (%)
20 68.27 ± 0.12
30 68.54 ± 0.31
40 68.77 ± 0.10
50 68.93 ± 0.16
60 68.75 ± 0.04

Table S1. Parameter analysis for labeling ratio on the Cityscapes
1/8-split at round k=2 with random scaling between 0.25 and 1.0.

As shown in Table S1, if we directly apply iterative train-
ing without enlarging the labeling ratio, the performance
gain is quite limited (68.01% → 68.27%). However, as we
gradually enlarge the labeling ratio, a steady performance
growth is observed with the largest improvement (68.01%

→ 68.93%) achieved at α=50%.
Moreover, we can observe the robustness of our progres-

sive pseudo-labeling strategy from Table S1 that noticeable
performance boost could be achieved in a relatively wide
range (i.e. 40% ∼ 60%).

Data Augmentaion Magnitude. An orthogonal strategy
is to progressively increase the magnitude of data augmen-
tation. In our experiments, we focus on strengthening the
random scaling factor on Cityscapes split 1/8 at round k=2.
The range of random scaling intensity in round k=1 is [0.25,
1.0], which is regarded as the initial range. Afterward, we
enlarge the initial range in the following self-training round,
decreasing the lower bound 0.25 by βmin and increasing the
upper bound 1.0 by βmax.

βmin βmax mIoU (%)
0.4 0.0 68.77 ± 0.12
0.2 0.0 69.16 ± 0.03
0.0 0.0 68.93 ± 0.16
0.0 0.25 68.97 ± 0.44
0.0 0.5 69.52 ± 0.03
0.0 0.75 69.05 ± 0.06
0.2 0.5 69.64 ± 0.01

Table S2. Parameter analysis for random scaling magnitude on the
Cityscapes split 1/8 at round k=2, with labeling ratio=50%.

As shown in Table S2, the best performance is achieved
at βmin = 0.2 and βmax = 0.5. Notably, by enlarging
the range of random scaling appropriately, a tangible per-
formance gain is obtained (68.97%→ 69.64%).

Though enlarging data augmentation magnitude to dif-
ferent extent leads to various performance, we observe that
we can harvest performance boost in a wide range of in-
creased data augmentation magnitude as shown in Table S2,
which proves the robustness of our progressive data aug-
mentation strategy.

Data Augmentation mIoU
None 70.24

Photometric Distortion 70.84
Random Rotation 70.26
Random Scaling 74.36

Table S3. Effectiveness of different data augmentation methods in
semantic segmentation.
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Figure S1. Visualization of pseudo labels generated by different methods. We provide the pseudo labels of ST, CBST and ours at round
k=1 (i.e. Ours) as well as ours at round k=2 (i.e. Ours w/ Iterative), together with the RGB image and the corresponding ground-truth.
Black areas indicate the ignored region.
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Figure S2. Qualitative results of different semi-supervised methods on Cityscapes at split 1/8 at round k=1. Along with the RGB image
and its corresponding ground-truth, we provide the results of ST, CBST and our method respectively.

S1.2. Data augmentation in the progressive strategy

Here, we explain why only random scaling is consid-
ered in the progressive strategy. Our previous empiri-
cal experiments showed that random scaling is the most
useful data augmentation method for semantic segmenta-
tion. To be specific, we have conducted experiments on the
Cityscapes dataset with different data augmentation meth-

ods. Specifically, we trained a PSPNet50 using all 2975
fine-annotated training images with a crop size of 361×361
(half-resolution training). For data augmentation methods,
we consider photometric distortion (brightness, contrast,
saturation, and hue), random rotation, and random scal-
ing following common setups in previous work [56]. We
employed one of the three data augmentation methods or
none of them, respectively, and report the performance on
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mIoU Gain
Baseline 75.1 81.3 47.0 63.5 56.7 43.8 59.3 48.6 44.4 55.6 28.3 34.5 45.4 44.8 47.3 53.4 76.6 52.5 62.8 36.1 52.8 0.0

ST 76.9 82.3 48.5 66.4 57.1 42.3 60.0 51.5 46.1 54.3 33.6 36.1 47.9 48.0 53.7 55.6 79.3 53.6 69.2 36.9 55.0 2.2
CBST 77.2 83.5 49.1 66.7 57.7 41.9 62.5 52.5 46.1 57.1 34.2 37.0 50.4 46.4 54.3 50.7 80.3 54.8 68.9 37.2 55.4 2.6

DARS (Ours) 77.5 83.4 50.2 67.0 57.5 43.8 63.0 52.3 46.6 56.7 35.2 35.3 50.6 49.4 54.7 58.3 80.6 54.9 69.3 38.4 56.2 3.4

Table S4. Comparisons of different semi-supervised approaches on the 1/8 split of the ScanNet dataset at round k=1 with labeling ratio
α=50%. The tail classes are highlighted in blue. We make the best performance result bold for each class. Single scale test is adopted for
all methods here.

Method Split
mIoU (%)

Baseline Result Oracle Gain

DARS (Ours)
1/8 52.84 56.58

61.69
3.74

1/4 56.61 58.35 1.74

Table S5. Our results on ScanNet with iterative training on split
1/8 and 1/4.

the validation set. As shown in Table S3, random scaling
could bring significant performance boosts, whereas photo-
metric distortion or random rotation could only bring lim-
ited gains. We will add this analysis to the supplementary
material upon publication.

Moreover, applying too strong magnitudes for data aug-
mentation methods like brightness and rotation might in-
fluence data distribution. Hence, we only consider random
scaling in the progressive strategy. However, we believe
other data augmentation methods like mixup could also be
incorporated into our progressive strategy to further boost
performance and we hope our idea of progressively increas-
ing data augmentation magnitude for iterative training could
benefit future research.

S1.3. Visualization of Pseudo Labels

To provide more information about our approach, we vi-
sualize the pseudo labels generated by our method as well
as conducting comparisons with methods such as ST and
CBST on the Cityscapes dataset.

As shown in Fig. S1, pseudo labels form ST and CBST
are often overwhelmed by the majority classes like road and
vegetation. And the tail class objects are often ignored in
their pseudo labels, such as the pole and traffic light in the
red box. As a result, the label distribution of their pseudo
labels is extremely biased towards the dominant classes.

In contrast, with our distribution alignment and random
sampling strategy to deal with the confidence overlapping
phenomenon, the percentage of dominant classes are re-
duced and the pseudo labels are re-distributed to cover a
large spatial area. Besides, our method successfully pseudo-
labels the tail classes such as the pole and traffic light in the
red box at round k=1 (see Ours in Figure S1).

Further, when we enlarge the labeling ratio to 50% at
round k=2, the quality of our pseudo labeled data is further
enhanced. More tail class objects are pseudo-labeled and

incorporated into our pseudo labels, as shown by the red
boxes of Ours (w/ Iterative) in Figure S1.

S1.4. Qualitative Results

In this section, we provide qualitative results of the
semi-supervised semantic segmentation methods on the
Cityscapes dataset. Concretely, we compare our results with
ST and CBST methods at round k=1.

As shown in Fig. S2, previous methods mainly have two
failure modes in segmenting tail classes: (1) they tend to
leave out some tail classes like fence, traffic light and wall
(e.g. in the red box areas, the fence is missing in (a), one
traffic light is lost in (c), and the wall is completely un-
recognized in (e)); (2) they suffer from the confusion with
similar classes and mistake tail class object as other classes.
For instance, in (b), part of the bus is mistaken as vege-
tation, truck or car, and in (d), some part of the train is
misclassified as bus.

Thanks to our distribution alignment and sampling strat-
egy to calibrate the bias, our method can alleviate the above
two issues and thus outperforms ST and CBST on tail
classes significantly. As shown in Fig. S2, our method can
successfully segment the tail class objects as in (c) and rec-
ognize most tail class areas (e.g. the fence in (a) and the
wall area in (e)). Moreover, our method significantly im-
proves the model’s ability to handle the confusion between
similar classes and give consistent and correct predictions
as in (b) and (d).

S2. Additional Experiments on ScanNet
To further demonstrate the transferability and broad ap-

plicability of our method, we evaluate it on the indoor scene
dataset, ScanNet [1]. To be noted, we do not tune the hyper-
parameters on the ScanNet dataset to show the generality of
our method.

Dataset. ScanNet is an RGB-D dataset collected from
1,513 indoor scenes. For the 2D semantic segmentation
task, ScanNet contains 19,466 RGB images for training and
5,436 images for validation with a resolution of 1296×968.
In our semi-supervised setting, 1/8 (i.e. 1/8-split) and 1/4
(i.e. 1/4-split) of the images are randomly chosen from the



training set to serve as the labeled set. Pixel-level annota-
tions for the following 21 object classes are provided: wall,
floor, cabinet, bed, chair, sofa, table, door, window, book-
shelf, picture, counter, desk, curtain, refrigerator, shower
curtain, toilet, sink, bathtub, other furniture, and void (the
ignore category).
Implementation Details We follow the same experimen-
tal setup as the Cityscapes dataset, except that the number of
epochs is set to 20 for each training round and a crop size of
481×481 is adopted. Also, since the variance in our exper-
iments is rather small as shown in this supplementary file,
we only run one experiment for each setting on ScanNet to
save the computational cost.

Main Results. We compare the proposed DARS method
with the single thresholding method [16, 15, 5, 14, 8] (ST)
and the class balance thresholding method [18, 2] (CBST)
considering on the 1/8-split setting at round k=1 without it-
erative training. As shown in Table S4, the proposed simple
DARS method achieves 56.2% mIoU on the validation set,
surpassing ST and CBST method, which reiterates the su-
periority of our proposed method. To be noted, our method
introduces little computational cost in comparison with the
compared approaches.

Further, we report the final results of the proposed
method with iterative training at split 1/8 and 1/4 in Table
S5. Notably, our method achieves 58.35% in terms of mIoU
with only 1/4 labeled data, which is very close to the fully-
supervised results of 61.69%.

Analysis We notice that the performance gain achieved
by self-training is relatively small on the ScanNet dataset
in comparison with the Cityscapes dataset. We mainly
attribute this to the difference between indoor and urban
scenes. While urban scenes usually have similar structures
(e.g. road is always at the bottom and the sky at the top), in-
door scenes tend to have large variance and complex spatial
relationships which impose obstacles for pseudo-labeling
that relies on models trained with only a small set of labeled
data. Exploring the 3D structure for semi-supervised learn-
ing in indoor scene parsing have the potential to address
these difficulties which will be our future work. We believe
our method could also be incorporated into other methods
to further boost the performance for semi-supervised in-
door scene parsing. Also, we barely finetune the hyper-
parameters like labeling ratio and data augmentation mag-
nitude to save time and computational costs since our main
purpose for experiments on ScanNet is to show the broad
applicability of our method with superiority to previous
self-training methods.

S3. Unsupervised Domain Adaptation Setting
In this section, we further conduct experiments on the

more challenging unsupervised domain adaptation setting,

in order to confirm our major insight about the importance
of semantic-level distribution alignment in pseudo-labeling.

While we do not have the labeled set for the target do-
main to obtain the true label distribution, for comparison
fairness with other methods, we could not perform DARS
for generating unbiased pseudo labels. Instead, we use this
setting to study the relationship between the extent of distri-
bution mismatch in pseudo labels (i.e. KL divergence with
target label distribution) and the performance boost.

We compare the following pseudo-labeling methods:

• ST: the single confidence thresholding method like
[11, 16], regraded as the self-training baseline method;

• CBST: the class balanced confidence thresholding
method [2, 18], which actually uses confidence to esti-
mate the target label distribution;

• DARS (SD): DARS using the source label distribution
as the target label distribution;

• DARS (TD): DARS using the target label distribution
counted on the validation set of the target domain.

Dataset. We follow [4, 10, 12] to consider the popular
synthetic-to-real adaptation task: GTA5 → Cityscapes. The
GTA5 dataset [7] provides 24,966 images with pixel-wise
labels. We use the 19 classes of GTA5 in common with the
Cityscapes for adaptation. Moreover, we take advantage of
image translation and use images translated by CyCADA
[3] in GTA5 for training.

Implementation Details We also follow the same experi-
mental setup as the Cityscapes dataset, except that the num-
ber of epochs is set to 10 for the pre-training round on GTA5
and a crop size of 713×713 is adopted.

Main Results. As shown in Table S7, the smaller the
KL divergence between the distribution of pseudo labels
and target labels is, the better performance is achieved,
which highly validates our motivation to re-distribute biased
pseudo labels. Moreover, it is noteworthy that when the
pseudo labels achieve perfect distribution alignment with
true distribution (e.g. DARS (TD)), it could achieve much
more performance gain than other pseudo-labeling (e.g. 4%
mIoU higher than DARS (SD), 2.27% higher than CBST in
a single round).

Further, we report the results with iterative training of
DARS (TD) in comparison with previous works in Table S6.
We claim that the comparison is not fair since DARS (TD)
utilizes the target label distribution from the validation set,
and we show the encouraging and superior performance (i.e.
55.0% mIoU) of it only to highlight the importance of dis-
tribution aligning in pseudo-labeling for unsupervised do-
main adaptation settings, hoping to inspire more works in
this direction.
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mIoU
CyCADA [3] VGG-16 85.2 37.2 76.5 21.8 15.0 23.8 22.9 21.5 80.5 31.3 60.7 50.5 9.0 76.9 17.1 28.2 4.5 9.8 0.0 35.4

ASN [9] ResNet-101 86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4
CLAN [6] ResNet-101 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2

ADVENT [10] ResNet-101 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5
CAG-UDA [13] ResNet-101 90.4 51.6 83.8 34.2 27.8 38.4 25.3 48.4 85.4 38.2 78.1 58.6 34.6 84.7 21.9 42.7 41.1 29.3 37.2 50.2

RPT [14] ResNet-101 89.7 44.8 86.4 44.2 30.6 41.4 51.7 33.0 87.8 39.4 86.3 65.6 24.5 89.0 36.2 46.8 17.6 39.1 58.3 53.2
CBST [18] WideResNet-38 89.6 58.9 78.5 33.0 22.3 41.4 48.2 39.2 83.6 24.3 65.4 49.3 20.2 83.3 39.0 48.6 12.5 20.3 35.3 47.0
PyCDA [5] WideResNet-38 92.3 49.2 84.4 33.4 30.2 33.3 37.1 35.2 86.5 36.9 77.3 63.3 30.5 86.6 34.5 40.7 7.9 17.6 35.5 48.0
CRST [17] WideResNet-38 91.7 45.1 80.9 29.0 23.4 43.8 47.1 40.9 84.0 20.0 60.6 64.0 31.9 85.8 39.5 48.7 25.0 38.0 47.0 49.8

CyCADA∗ [3] ResNet-50 85.6 37.6 81.7 34.3 20.2 35.8 41.4 31.7 85.2 37.8 74.0 66.5 24.5 83.5 24.6 19.0 0.0 30.1 26.7 44.2
DARS (TD) ResNet-50 90.6 50.8 88.0 43.4 33.9 48.3 53.4 50.2 87.0 46.2 80.9 71.6 34.4 87.3 33.1 40.6 6.6 45.6 53.4 55.0

Table S6. Adaptation results from GTA5 → Cityscapes. The tail classes are highlighted in blue. We make the top-2 performance results
bold for each class. CyCADA∗: we re-implements CyCADA on our PSPNet-50 framework.

Method DKL mIoU (%) Gain (%)
Baseline / 43.43 ± 0.01 0.0
ST 0.0727 48.04 ± 0.69 +4.61
CBST 0.0196 48.74 ± 0.16 +5.31
DARS (SD) 0.1558 47.01 ± 0.42 +3.58
DARS (TD) 0.0006 51.01 ± 0.05 +7.58

Table S7. GTA5 → Cityscapes results at round k=1. DKL indicates
the KL divergence between the distribution of pseudo labels and
Cityscapes real labels.

References

[1] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5828–5839, 2017. 1, 3

[2] Zhengyang Feng, Qianyu Zhou, Guangliang Cheng, Xin
Tan, Jianping Shi, and Lizhuang Ma. Semi-supervised se-
mantic segmentation via dynamic self-training and class-
balanced curriculum. arXiv preprint arXiv:2004.08514,
2020. 4

[3] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,
Phillip Isola, Kate Saenko, Alexei Efros, and Trevor Darrell.
Cycada: Cycle-consistent adversarial domain adaptation. In
International conference on machine learning, pages 1989–
1998. PMLR, 2018. 4, 5

[4] Wei-Chih Hung, Yi-Hsuan Tsai, Yan-Ting Liou, Yen-Yu
Lin, and Ming-Hsuan Yang. Adversarial learning for
semi-supervised semantic segmentation. arXiv preprint
arXiv:1802.07934, 2018. 4

[5] Qing Lian, Fengmao Lv, Lixin Duan, and Boqing Gong.
Constructing self-motivated pyramid curriculums for cross-
domain semantic segmentation: A non-adversarial approach.
In Proceedings of the IEEE International Conference on
Computer Vision, pages 6758–6767, 2019. 4, 5

[6] Yawei Luo, Liang Zheng, Tao Guan, Junqing Yu, and Yi
Yang. Taking a closer look at domain shift: Category-level
adversaries for semantics consistent domain adaptation. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2507–2516, 2019. 5

[7] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen
Koltun. Playing for data: Ground truth from computer
games. In European conference on computer vision, pages
102–118. Springer, 2016. 1, 4

[8] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao
Zhang, Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Han
Zhang, and Colin Raffel. Fixmatch: Simplifying semi-
supervised learning with consistency and confidence. arXiv
preprint arXiv:2001.07685, 2020. 4

[9] Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Ki-
hyuk Sohn, Ming-Hsuan Yang, and Manmohan Chandraker.
Learning to adapt structured output space for semantic seg-
mentation. In CVPR, pages 7472–7481, 2018. 5

[10] Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Matthieu
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