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1. WebGL Implementation Details
Our web renderer is implemented in WebGL using the

THREE.js library. To conserve memory bandwidth, we load
the 3D texture atlas as three separate 8-bit 3D textures: one
for alpha, one for RGB and one for features. We load the
indirection grid as a low resolution 8-bit 3D texture.

During ray marching, we first query the intersection grid
at the current location along the ray. If this value indicates
that the macroblock is empty, we use a ray-box intersection
test to skip ahead to the next macroblock along the ray.

For non-empty macroblocks, we first query the alpha
texture using nearest neighbor interpolation. If alpha is
zero, the current voxel within the macroblock contains
empty space, and we do not fetch any additional informa-
tion. If alpha is non-zero, we use trilinear interpolation
to fetch the high-resolution alpha, colors and features at
that voxel. This reduces the bandwidth requirement from
64 bytes per sample to 1 byte per sample for rays that are
traversing empty space inside each occupied macroblock.

We implement the view-dependence MLP as simple
nested for-loops in a GLSL shader. We load the network
weights as 32-bit floating point textures and hard-code the
network biases directly into the shader. Interestingly, we
found that reducing precision lower than 32 bits did not
improve the rendering performance noticeably. For added
efficiency, we only evaluate the view-dependence MLP for
pixels that have non-zero accumulated alpha.

2. Performance Measurement
We measure performance using the Chrome browser run-

ning on a 2019 MacBook Pro Laptop equipped with an 85
watt AMD Radeon Pro 5500M GPU (8GB of GPU RAM).

For accurate performance measurements, we make sure
the laptop is connected to the charger, close all other ap-
plications on the laptop, and restart our browser to disable
frame-rate limiting from vertical synchronization:

--args --disable-gpu-vsync \
--disable-frame-rate-limit

In our results, we report the average frame time for ren-

PSNR ↑ SSIM ↑ LPIPS ↓ FPS ↑ MB ↓
10003 30.38 0.950 0.050 84.06 86.7
7503 29.94 0.947 0.054 89.82 44.7
5003 28.93 0.939 0.064 101.78 17.8

Table 1: Voxel grid resolution ablation using SNeRG (PNG)
on Synthetic 360◦ Scenes.

dering a 150-frame camera animation orbiting the scene (or
rotating within the camera plane for forward-facing scenes).
Our test-time renderings use the same image resolutions and
camera intrinsics as the input training images:

• 39◦ field-of-view at 800 × 800 for Synthetic 360◦

scenes,

• 53◦ field-of-view at 1006 × 756 for Real Forward-
Facing, and

• 53◦ at field-of-view 990× 773 for Real 360◦ scenes.

3. Additional Experiment Details
3.1. Experiments with Changing 3D Resolution

Table 1 demonstrates that our method is able to achieve
even higher rendering speeds and lower storage costs by
baking the 3D grids at a lower resolution, at the expense
of a slight decrease in rendering quality.

3.2. Real 360◦ Scenes

We evaluate our method on the two real 360◦ scenes pro-
vided by the original NeRF paper (Flowers and Pine Cone)
and two new scenes that we have captured ourselves (Toy
Car and Spheres). All four datasets contain 100-200 im-
ages where the camera orbits around an object. Note that
the Spheres scene contains glossy objects that are hard to
model using diffuse geometry alone.

Tables 2, 3, and 4 demonstrate that our method is able to
maintain rendering quality close to the trained NeRF mod-
els while rendering about 30 frames per second (Table 5).
Table 8 studies the impact of using different image and



Toy Pine
Mean Spheres Car Flowers Cone

JAXNeRF+ 24.56 23.56 26.13 25.22 23.33
JAXNeRF+ Deferred 24.31 23.44 26.16 24.81 22.81
SNeRG (PNG) 23.97 23.16 26.17 24.43 22.14
JAXNeRF+ Diffuse 24.02 23.26 26.17 24.23 22.42

Table 2: PSNR ↑, Real 360◦ scenes.

Toy Pine
Mean Spheres Car Flowers Cone

JAXNeRF+ 0.703 0.573 0.792 0.765 0.681
JAXNeRF+ Deferred 0.693 0.563 0.787 0.754 0.666
SNeRG (PNG) 0.662 0.521 0.788 0.746 0.595
JAXNeRF+ Diffuse 0.681 0.565 0.788 0.728 0.645

Table 3: SSIM ↑, Real 360◦ scenes.

Toy Pine
Mean Spheres Car Flowers Cone

JAXNeRF+ 0.248 0.311 0.195 0.227 0.257
JAXNeRF+ Deferred 0.261 0.320 0.209 0.244 0.271
SNeRG (PNG) 0.293 0.357 0.209 0.272 0.336
JAXNeRF+ Diffuse 0.260 0.306 0.200 0.257 0.277

Table 4: LPIPS ↓, Real 360◦ scenes.

video compression algorithms for these datasets, and shows
that we are able to store these scenes using about 50 MB.

We train all NeRF models on this data by shifting and
scaling the camera translations so that they approximately
lie on a sphere around the origin, and sampling points lin-
early in disparity along each camera ray, as done by Milden-
hall et al. After training, we manually set a bounding box
to isolate the objects of interest in the scene and ignore
the unbounded peripheral content that is not sampled well
enough for NeRF to recover. During baking, we only eval-
uate the subset of the scene which is inside this bounding
box. We change our quality measurements to reflect this,
masking all of the images (our results, baseline results, and
ground truth images) using the alpha mask generated by
our method. Otherwise, the results would be significantly
biased by the missing background geometry that was out-
side the scene bounding box. Interestingly, we find that a
diffuse-only model without any view-dependent effects is
surprisingly competitive for these scenes, potentially due to
the low-frequency lighting conditions during capture. Ad-
ditionally, the diffuse model is able to reasonably fake view-
dependent effects in some cases by hiding mirrored versions
of reflected content inside the objects’ surfaces.

3.3. Real Forward-Facing Scenes

We also evaluate our approach on the real forward-facing
scenes in the NeRF paper (Tables 6, 7, and 8). Since these
scenes are only captured and viewed from a limited range of

Toy Pine
Spheres Car Flowers Cone

53.7 41.1 40.8 39.5

Table 5: Performance (FPS ↑), Real 360◦ Scenes.

(a) JAXNeRF+ (25.50) (b) Deferred (24.91)

(c) SNeRG (24.43) (d) Ground Truth

Figure 1: Real forward-facing scene example results
(PSNR in parentheses).

PSNR ↑ SSIM ↑ LPIPS ↓ W ↓ FPS ↑ FPS/W ↑
JAXNeRF+ 26.95 0.845 0.145 300 0.00 0.00001
DeRF 24.81 0.767 0.274 300 0.03 0.00009
NeRF 26.50 0.811 0.250 300 0.03 0.00011
JAXNeRF 26.92 0.831 0.173 300 0.04 0.00013
IBRNet 26.73 0.851 0.175 300 0.18 0.00061
LLFF 24.13 0.798 0.212 250 60.00 0.24000
SNeRG (PNG) 25.63 0.818 0.183 85 27.38 0.32210

Table 6: Quality and performance comparison for Real
Forward-Facing scenes.

T-Rex Leaves Room Orchids Horns Fortress Fern Flower
34.78 19.02 37.09 18.54 34.02 39.16 26.73 26.58

Table 7: Performance (FPS ↑), Real Forward-Facing
Scenes.

forward-facing viewpoints, layered representations such as
multi-plane images [2, 6, 8, 10, 12] are a compelling option
for real-time rendering. Note that the normalized device
coordinate transformation used in NeRF for these forward-
facing scenes can be interpreted as transforming NeRF into
a continuous version of a multiplane image representation
that supports larger viewpoint changes.

We found that our baking procedure sometimes reduces
the total alpha mass in the scene, introducing small semi-
transparent holes for these datasets. To overcome this, we
partially un-premultiply alpha after ray marching. That is,



after alpha compositing:

rgbafeatures← rgbafeatures× min(1.0, 1.5α)

α
(1)

if α > 0. This fully saturates alpha values above 0.66, while
still allowing for soft edges and a smooth fall-off.

3.4. Baselines

Here we provide additional details for the baseline meth-
ods we use in our experiments.
NeRF [7] We directly use the results reported in the origi-
nal paper by Mildenhall et al. Run-time was measured on a
single NVIDIA V100 GPU.
JAXNeRF [1] is a JAX implementation of NeRF, with de-
fault settings (64 + 128 samples per ray, MLP width of 256).
Run-time was measured on an NVIDIA V100 GPU.
JAXNeRF+ is a more compute-intensive version of
JAXNeRF, trained with 192 + 384 samples per ray and an
MLP width of 512 channels. Run-time was measured on a
single NVIDIA V100 GPU. We use this architecture as a
starting point for our modifications (deferred shading and
baking), as using more samples per ray allows us to recover
a sparser representation that better concentrates opacity near
object surfaces.
JAXNeRF+ Tinyview This baseline measures the effects
of using a smaller network architecture (same as MLPΦ)
for the view-dependent effects. It uses the same architecture
for the view-dependent effects as our “Deferred” model, but
evaluates view-dependent effects for every 3D sample in-
stead of once per pixel.
JAXNeRF+ Diffuse This baseline measures the effects of
modeling view-dependent appearance. It uses the same ar-
chitecture as JAXNeRF+, but replaces the view dependence
network with a single layer that directly outputs a color
without any knowledge of the viewing direction.
AutoInt [3] We use the N=8 setting reported by Lindell et
al., which achieves their highest ratio of quality to run-time.
The authors did not mention what hardware they ran on, but
we are assuming that they also run on an NVIDIA V100
GPU since they directly compare to NeRF runtimes.
Neural Volumes [5] We copy the rendering quality results
reported in the NeRF paper and copy the rendering run-time
results reported in the AutoInt paper. We assume that the
run-times reported in the AutoInt paper are measured on an
NVIDIA V100 GPU since the AutoInt paper directly com-
pares these results with NeRF run-times.
NSVF [4] We use the average run-time of 1.537 seconds
per frame reported by the authors, using early stopping. Per-
formance was measured on an NVIDIA V100 GPU.
DeRF [9] We use the DeRF model with 8 heads and 96
channels per head, which achieves the highest ratio of qual-
ity to run-time according to the results in their paper. Run-
times were measured on an NVIDIA V100 GPU.

IBRNet [11] We use the highest quality results (per-scene
fine-tuned) in their paper. Run-times were estimated by
scaling the NVIDIA V100 GPU NeRF run-times according
to the TFLOPs in Table 3 of their paper.
LLFF [6] Run-times were measured using the original
CUDA implementation on a GTX 2080 Ti (250W).

3.5. Experiments with Changing 3D Resolution

Table 1 demonstrates that our method is able to achieve
even higher rendering speeds and lower storage costs by
baking the 3D grids at a lower resolution, at the expense
of a slight decrease in rendering quality.

3.6. Per-Scene Quality and Performance Metrics

Tables 9-11, provide a per-scene breakdown for the qual-
ity metrics in the Synthetic 360◦ scenes. Similar break-
downs for the Real Forward Facing scene can be found in
Tables 12-14. Table 15 shows the per-scene frame time
and Table 16 shows the per-scene GPU memory consump-
tion our performance ablations: 1) removing the view-
dependence MLP, 2) removing the sparsity loss, and 3)
switching from ‘deferred” rendering back to querying an
MLP at each sample along the ray.
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Synthetic 360◦ Real Forward-Facing Real 360◦

PSNR ↑ SSIM ↑ LPIPS ↓ MB ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MB ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MB ↓
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PSNR ↑
Mean Chair Drums Ficus Hotdog Lego Materials Mic Ship
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SSIM ↑
Mean Chair Drums Ficus Hotdog Lego Materials Mic Ship

AutoInt 0.911 0.928 0.861 0.898 0.974 0.900 0.930 0.948 0.852
NV 0.893 0.916 0.873 0.910 0.944 0.880 0.888 0.946 0.784
IBRNet 0.942 — — — — — — — —
NeRF 0.947 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856
JAXNeRF 0.952 0.974 0.927 0.967 0.979 0.968 0.952 0.987 0.865
NSVF 0.953 0.968 0.931 0.973 0.980 0.960 0.973 0.987 0.854
JAXNeRF+ 0.962 0.982 0.936 0.980 0.983 0.979 0.956 0.991 0.887
JAXNeRF+ Tinyview 0.954 0.978 0.925 0.966 0.979 0.975 0.946 0.986 0.880
JAXNeRF+ Deferred 0.952 0.976 0.922 0.964 0.976 0.976 0.939 0.984 0.874
SNeRG (PNG) 0.950 0.975 0.929 0.967 0.971 0.973 0.938 0.982 0.865
JAXNeRF+ Diffuse 0.927 0.951 0.888 0.916 0.966 0.968 0.911 0.967 0.850

Table 10: SSIM, Synthetic 360◦ scenes.

LPIPS ↓
Mean Chair Drums Ficus Hotdog Lego Materials Mic Ship

AutoInt 0.170 0.141 0.224 0.148 0.080 0.175 0.136 0.131 0.323
NV 0.160 0.109 0.214 0.162 0.109 0.175 0.130 0.107 0.276
IBRNet 0.072 — — — — — — — —
NeRF 0.081 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206
JAXNeRF 0.051 0.027 0.070 0.033 0.030 0.030 0.048 0.013 0.156
NSVF 0.047 0.043 0.069 0.017 0.025 0.029 0.021 0.010 0.162
JAXNeRF+ 0.038 0.017 0.057 0.018 0.022 0.017 0.041 0.008 0.123
JAXNeRF+ Tinyview 0.047 0.020 0.079 0.030 0.028 0.020 0.051 0.016 0.130
JAXNeRF+ Deferred 0.049 0.022 0.069 0.041 0.033 0.019 0.052 0.016 0.138
SNeRG (PNG) 0.050 0.025 0.061 0.028 0.043 0.022 0.052 0.016 0.156
JAXNeRF+ Diffuse 0.068 0.048 0.101 0.074 0.044 0.024 0.074 0.031 0.152

Table 11: LPIPS, Synthetic 360◦ scenes.

PSNR ↑
Mean Room Fern Leaves Fortress Orchids Flower T-Rex Horns

LLFF 24.13 28.42 22.85 19.52 29.40 18.52 25.46 24.15 24.70
DeRF 24.81 29.72 24.87 20.64 26.84 19.97 25.66 24.86 25.89
NeRF 26.50 32.70 25.17 20.92 31.16 20.36 27.40 26.80 27.45
IBRNet 26.73 — — — — — — — —
JAXNeRF 26.92 33.30 24.92 21.24 31.78 20.32 28.09 27.43 28.29
JAXNeRF+ 26.95 33.79 24.38 20.82 31.14 20.09 28.34 27.94 29.08
JAXNeRF+ Deferred 26.61 32.63 24.88 20.67 31.28 19.72 27.40 27.72 28.56
SNeRG (PNG) 25.63 30.04 24.85 20.01 30.91 19.73 27.00 25.80 26.71
JAXNeRF+ Diffuse 26.31 31.44 24.98 20.64 30.46 19.89 26.95 28.06 28.03

Table 12: PSNR, Real Forward-Facing scenes.



SSIM ↑
Mean Room Fern Leaves Fortress Orchids Flower T-Rex Horns

LLFF 0.798 0.932 0.753 0.697 0.872 0.588 0.844 0.857 0.840
DeRF 0.767 0.930 0.770 0.680 0.730 0.610 0.790 0.840 0.790
NeRF 0.811 0.948 0.792 0.690 0.881 0.641 0.827 0.880 0.828
IBRNet 0.851 — — — — — — — —
JAXNeRF 0.831 0.958 0.806 0.717 0.897 0.657 0.850 0.902 0.863
JAXNeRF+ 0.845 0.966 0.813 0.724 0.900 0.669 0.868 0.921 0.898
JAXNeRF+ Deferred 0.837 0.957 0.816 0.720 0.901 0.657 0.844 0.913 0.886
SNeRG (PNG) 0.818 0.936 0.802 0.696 0.889 0.655 0.835 0.882 0.852
JAXNeRF+ Diffuse 0.832 0.947 0.821 0.715 0.891 0.656 0.827 0.916 0.883

Table 13: SSIM, Real Forward-Facing scenes.

LPIPS ↓
Mean Room Fern Leaves Fortress Orchids Flower T-Rex Horns

LLFF 0.212 0.155 0.247 0.216 0.173 0.313 0.174 0.222 0.193
DeRF 0.274 0.160 0.300 0.310 0.320 0.340 0.240 0.220 0.300
NeRF 0.250 0.178 0.280 0.316 0.171 0.321 0.219 0.249 0.268
IBRNet 0.175 — — — — — — — —
JAXNeRF 0.173 0.086 0.207 0.247 0.108 0.266 0.156 0.143 0.173
JAXNeRF+ 0.145 0.066 0.176 0.233 0.097 0.238 0.124 0.113 0.119
JAXNeRF+ Deferred 0.160 0.090 0.186 0.240 0.097 0.256 0.149 0.125 0.134
SNeRG (PNG) 0.183 0.133 0.198 0.252 0.125 0.255 0.167 0.157 0.176
JAXNeRF+ Diffuse 0.164 0.115 0.182 0.241 0.105 0.251 0.166 0.116 0.133

Table 14: LPIPS, Real Forward-Facing scenes.

MLP Ls Defer Mean Chair Drums Ficus Hotdog Lego Materials Mic Ship
Ours 11.9 9.8 9.6 21.1 7.2 9.3 10.1 10.1 17.9

1) 9.2 6.6 6.6 19.4 5.3 6.0 7.8 7.6 14.0
2) — 15.3 15.7 — 24.4 25.4 19.7 12.6 27.0
3) 343.6 269.8 268.9 987.9 155.8 261.4 262.2 222.6 320.4

Table 15: Performance ablation (milliseconds/frame ↓), Synthetic 360◦ Scenes.

MLP Ls Defer Mean Chair Drums Ficus Hotdog Lego Materials Mic Ship
Ours 1.73 0.78 0.86 4.99 0.53 0.74 0.98 1.18 3.78

1) 1.73 0.78 0.86 4.99 0.53 0.74 0.98 1.18 3.78
2) 4.26 2.44 3.25 7.57 4.17 3.68 4.91 2.33 5.77
3) 1.73 0.78 0.86 4.99 0.53 0.74 0.98 1.18 3.78

Table 16: Performance ablation (GPU Memory in GB ↓), Synthetic 360◦ Scenes.


