
Acknowledgements
The authors are grateful to Carl Doersch, Raia Hadsell, and
Evan Shelhamer for insightful discussions and feedback on
the manuscript.

A. Appendix
A.1. Implementation: data augmentation
Self-supervised pretraining. Each image is randomly aug-
mented twice, resulting in two images: x,x0. The augmen-
tations are constructed as compositions of the following op-
erations, each applied with a given probability:

1. random cropping: a random patch of the image is
selected, whose area is uniformly sampled in [0.08 ·
A,A], where A is the area of the original image,
and whose aspect ratio is logarithmically sampled in
[3/4, 4/3]. The patch is then resized to 224 ⇥224 pix-
els using bicubic interpolation;

2. horizontal flipping;

3. color jittering: the brightness, contrast, saturation and
hue are shifted by a uniformly distributed offset;

4. color dropping: the RGB image is replaced by its grey-
scale values;

5. gaussian blurring with a 23⇥23 square kernel and a
standard deviation uniformly sampled from [0.1, 2.0];

6. solarization: a point-wise color transformation x 7!
x · 1x<0.5 + (1� x) · 1x�0.5 with pixels x in [0, 1].

The augmented images x,x0 result from augmentations
sampled from distributions T and T 0 respectively. These
distributions apply the primitives described above with dif-
ferent probabilities, and different magnitudes. The follow-
ing table specifies these parameters for the SimCLR [9] and
BYOL frameworks [21], which we adopt for DetConS and
DetConB without modification.

DetConS DetConB

Parameter T T 0 T T 0

Random crop probability 1.0
Flip probability 0.5
Color jittering probability 0.8
Color dropping probability 0.2
Brightness adjustment max 0.8 0.4
Contrast adjustment max 0.8 0.4
Saturation adjustment max 0.8 0.2
Hue adjustment max 0.2 0.1
Gaussian blurring probability 1.0 0.0 1.0 0.1
Solarization probability 0.0 0.0 0.0 0.2

Transfer to COCO. When fine-tuning, image are randomly
flipped and resized to a resolution of u · 1024 pixels on the

longest side, where u is uniformly sampled in [0.8, 1.25],
then cropped or padded to a 1024⇥1024 image. The aspect
ratio is kept the same as the original image. During testing,
images are resized to 1024 pixels on the longest side then
padded to 1024⇥1024 pixels.

Transfer to PASCAL. During training, images are ran-
domly flipped and scaled by a factor in [0.5, 2.0]. Training
and testing are performed with 513⇥513-resolution images.

Transfer to Cityscapes. During training, images are
randomly horizontally flipped and scaled by a factor in
[0.5, 2.0], with minimum step size 0.25 within that range.
Training is performed on 769⇥769-resolution images and
testing is performed on 1025⇥2049-resolution images.

Transfer to NYU-Depth v2. The original 640⇥480 frames
are down-sampled by a factor of 2 and center-cropped to
304⇥228 pixels. For training, images are randomly flipped
horizontally and color jittered with the same grayscale,
brightness, saturation, and hue settings as [21].

A.2. Implementation: architecture
Our default feature extractor is a ResNet-50 [27]. In Sec-
tion 4.1 we also investigate deeper architectures (ResNet-
101, -152, and -200), and a wider model (ResNet-200 ⇥2)
obtained by scaling all channel dimensions by a factor of 2.

As detailed in Section 3.1, this encoder yields a grid
of hidden vectors which we pool within masks to obtain a
set of vectors hm representing each mask. These are then
transformed by a projection head g (and optionally a pre-
diction head q) before entering the contrastive loss.

DetConS . Following SimCLR, the projection head is a two-
layer MLP whose hidden and output dimensions are 2048
and 128. The network uses the learned parameters ✓ for
both views.

DetConB . Following BYOL, the projection head is a two-
layer MLP whose hidden and output dimensions are 4096
and 256. The network uses the learned parameters ✓ for
processing one view, and an exponential moving average of
these parameters ⇠ for processing the second. Specifically,
⇠ is updated using ⇠ � · ⇠ + (1� �) · ✓, where the decay
rate � is annealed over the course of training from �0 to 1
using a cosine schedule [21]. �0 is set to 0.996 when train-
ing for 1000 epochs and 0.99 when training for 300 epochs.
The projection of the first view is further transformed with
a prediction head, whose architecture is identical to that of
the projection head.

Computational cost. The forward pass through a ResNet-
50 encoder requires roughly 4B FLOPS. Ignoring the cost
of bias terms and point-wise nonlinearities, the projection
head in DetConS requires 4.4M FLOPS (i.e. 2048⇥2048
+ 2048⇥128). Since this is calculated 16 times rather than
once, it results in an overhead of 67M FLOPS compared

to SimCLR. For DetConB the combined cost of evaluating
the projection and prediction heads results in an additional
173M FLOPS compared to BYOL. Finally, the cost of eval-
uating the contrastive loss is 134M FLOPS for DetConS

(i.e. 128⇥4096⇥162) and 268M FLOPS for DetConB .
In total DetConS requires 201M additional FLOPS and
DetConB 441M which represent 5.3% and 11.6% of the
cost of evaluating the backbone. This overhead is suffi-
ciently small compared to the gain in training iterations re-
quired to reach a given transfer performance (e.g. a 500%
gain for DetConS over SimCLR, and a 333% for DetConB

over DetCon) for us not further distinguish between gains
in computation and training time.

A.3. Implementation: optimization

Self-supervised pretraining. We train using the LARS op-
timizer [65] with a batch size of 4096 split across 128 Cloud
TPU v3 workers. When training on ImageNet we again
adopt the optimization details of SimCLR and BYOL for
DetConS and DetConB , scaling the learning rate linearly
with the batch size and decaying it according to a cosine
schedule. For DetConS the base learning rate is 0.3 and
the weight decay is 10�6. DetConB also uses these val-
ues when training for 300 epochs; when training for 1000
epochs they are 0.2 and 1.5 · 10�6.

When pretraining on COCO, we replace the cosine learn-
ing rate schedule with a piecewise constant, which has been
found to alleviate overfitting [25], dropping the learning rate
by a factor of 10 at the 96th and 98th percentiles. For fair
comparison we use the same schedules when applying Sim-
CLR to the COCO dataset, which we also find to perform
better than the more aggressive cosine schedule.

Transfer to COCO. We fine-tune with stochastic gradient
descent, increasing the learning rate linearly for the first 500
iterations and dropping twice by a factor of 10, after 2

3 and
8
9 of the total training time, following [62]. We use a base
learning rate of 0.3 for ResNet-50 models and 0.2 for larger
ones, a momentum of 0.9, a weight decay of 4·10�5, and a
batch size of 64 images split across 16 workers.

Transfer to PASCAL. We fine-tune for 45 epochs with
stochastic gradient descent, with a batch size of 16 and
weight decay of 10�4. The learning rate is 0.02 and dropped
by a factor of 10 at the 70th and 90th percentiles.

Transfer to Cityscapes. We fine-tune for 160 epochs with
stochastic gradient descent and a Nesterov momentum of
0.9, using a batch size of 2 and weight decay of 10�4. The
initial learning rate is 0.005 and dropped by a factor of 10
at the 70th and 90th percentiles.

Transfer to NYU-Depth v2. We fine-tune for 7500 steps
with a batch size of 256, weight decay of 5·10�4, and a
learning rate of 0.16 scaled linearly with the batch size [21].

Fine-tune 1⇥ Fine-tune 2⇥

method APbb APmk APbb APmk

Supervised 42.0 37.3 43.4 38.4
SimCLR [9] 42.0 37.9 43.8 39.3
InfoMin [55] 42.9 38.6 44.5 39.9
BYOL [21] 43.7 38.8 44.3 39.4

DetConB 45.2 40.0 45.7 40.4
(a) ResNet-101 feature extractor

Fine-tune 1⇥ Fine-tune 2⇥

method APbb APmk APbb APmk

Supervised 43.4 38.5 43.4 38.5
SimCLR [9] 43.6 39.1 44.9 40.0
BYOL [21] 44.9 40.0 45.7 40.6

DetConB 46.0 40.6 46.4 40.7
(b) ResNet-152 feature extractor

Fine-tune 1⇥ Fine-tune 2⇥

method APbb APmk APbb APmk

Supervised 43.2 38.3 43.5 38.5
SimCLR [9] 44.3 39.6 45.3 40.3
BYOL [21] 45.6 40.5 45.9 40.5

DetConB 47.1 41.3 47.2 41.5
(c) ResNet-200 feature extractor

Table A.1. Comparison to prior art: all methods are pretrained
on ImageNet then fined-tuned on COCO for 12 epochs (1⇥ sched-
ule) or 24 epochs (2⇥ schedule).

A.4. Results: larger models
In Table 2 we compare to prior works on self-supervised
learning which transfer to COCO. Here we provide addi-
tional comparisons which use larger models (ResNet-101,
-152, and -200). We find DetCon to continue to outperform
prior work in this higher capacity regime (Table A.1).

