
The Many Faces of Robustness: A Critical Analysis of
Out-of-Distribution Generalization Supplementary Material

Dan Hendrycks1 Steven Basart2* Norman Mu1* Saurav Kadavath1 Frank Wang3

Evan Dorundo3 Rahul Desai1 Tyler Zhu1 Samyak Parajuli1 Mike Guo1

Dawn Song1 Jacob Steinhardt1 Justin Gilmer3

A. Additional Results
ImageNet-R. Expanded ImageNet-R results are in Table 4.
WSL pretraining on Instagram images appears to yield dra-
matic improvements on ImageNet-R, but the authors note the
prevalence of artistic renditions of object classes on the Insta-
gram platform. While ImageNet’s data collection process ac-
tively excluded renditions, we do not have reason to believe
the Instagram dataset excluded renditions. On a ResNeXt-
101 32×8d model, WSL pretraining improves ImageNet-R
performance by a massive 37.5% from 57.5% top-1 error to
24.2%. Ultimately, without examining the training images
we are unable to determine whether ImageNet-R represents
an actual distribution shift to the Instagram WSL models.
However, we also observe that with greater controls, that is
with ImageNet-21K pre-training, pretraining hardly helped
ImageNet-R performance, so it is not clear that more pre-
training data improves ImageNet-R performance.

Increasing model size appears to automatically improve
ImageNet-R performance, as shown in Figure 1. A ResNet-
50 (25.5M parameters) has 63.9% error, while a ResNet-152
(60M) has 58.7% error. ResNeXt-50 32×4d (25.0M) attains
62.3% error and ResNeXt-101 32×8d (88M) attains 57.5%
error.
ImageNet-C. Expanded ImageNet-C results are Table 3.
We also tested whether model size improves performance on
ImageNet-C for even larger models. With a different code-
base, we trained ResNet-50, ResNet-152, and ResNet-500
models which achieved 80.6, 74.0, and 68.5 mCE respec-
tively. Expanded comparisons between ImageNet-C and
Real Blurry Images is in Table 1.
ImageNet-A. ImageNet-A [5] is an adversarially filtered
test set and is constructed based on existing model weak-
nesses (see [9] for another robustness dataset algorithmically
determined by model weaknesses). This dataset contains
examples that are difficult for a ResNet-50 to classify, so
examples solvable by simple spurious cues are are espe-
cially infrequent in this dataset. Results are in Table 5. No-
tice Res2Net architectures [2] can greatly improve accuracy.

*Equal contribution.

ResNet DPN ResNeXt
55

60

65

Im
ag

eN
et

-R
 E

rro
r (

%
)

The Effect of Model Size on
ImageNet-R Error Rates

Baseline
Larger Model

Figure 1: Larger models improve robustness on ImageNet-R.
The baseline models are ResNet-50, DPN-68, and ResNeXt-
50 (32× 4d). The larger models are ResNet-152, DPN-98,
and ResNeXt-101 (32 × 8d). The baseline ResNeXt has a
7.1% ImageNet error rate, while the large has a 6.2% error
rate.

Results also show that Larger Models, Self-Attention, and
Pretraining help, while Diverse Data Augmentation usually
does not help substantially.

Implications for the Four Methods.
Larger Models help with ImageNet-C (+), ImageNet-A (+),
ImageNet-R (+), yet does not markedly improve DFR (−)
performance.
Self-Attention helps with ImageNet-C (+), ImageNet-A (+),
yet does not help ImageNet-R (−) and DFR (−) perfor-
mance.
Diverse Data Augmentation helps ImageNet-C (+),
ImageNet-R (+), yet does not markedly improve ImageNet-
A (−), DFR(−), nor SVSF (−) performance.
Pretraining helps with ImageNet-C (+), ImageNet-A (+),
yet does not markedly improve DFR (−) nor ImageNet-R
(−) performance.

Network Defocus
Blur

Glass
Blur

Motion
Blur

Zoom
Blur

ImageNet-C
Blur Mean

Real Blurry
Images

ResNet-50 61 73 61 64 65 58.7
+ ImageNet-21K Pretraining 56 69 53 59 59 54.8
+ CBAM (Self-Attention) 60 69 56 61 62 56.5
+ `∞ Adversarial Training 80 71 72 71 74 71.6
+ Speckle Noise 57 68 60 64 62 56.9
+ Style Transfer 57 68 55 64 61 56.7
+ AugMix 52 65 46 51 54 54.4
+ DeepAugment 48 60 51 61 55 54.2
+ DeepAugment+AugMix 41 53 39 48 45 51.7

ResNet-152 (Larger Models) 67 81 66 74 58 54.3

Table 1: ImageNet-C Blurs (Defocus, Glass, Motion, Zoom) vs Real Blurry Images. All values are error rates and percentages.
The rank orderings of the models on Real Blurry Images are similar to the rank orderings for “ImageNet-C Blur Mean,” so
ImageNet-C’s simulated blurs track real-world blur performance.

Hypothesis ImageNet-C Real Blurry Images ImageNet-A ImageNet-R DFR SVSF
Larger Models + + + + −
Self-Attention + + + − −
Diverse Data Augmentation + + − + − −
Pretraining + + + − −

Table 2: A highly simplified account of each method when tested against different datasets. This table includes ImageNet-A
results.

B. DeepAugment Details

Pseudocode. Below is Pythonic pseudocode for DeepAug-
ment. The basic structure of DeepAugment is agnostic to the
backbone network used, but specifics such as which layers
are chosen for various transforms may vary as the backbone
architecture varies. We do not need to train many different
image-to-image models to get diverse distortions [10, 6]. We
only use two existing models, the EDSR super-resolution
model [7] and the CAE image compression model [8]. See
full code for such details.

At a high level, DeepAugment processes each image with
an image-to-image network. The image-to-image network’s
weights and feedforward activations are distorted with each
pass. The distortion is made possible by, for example, negat-
ing the network’s weights and applying dropout to the feed-
forward activations. These modifications were not carefully
chosen and demonstrate the utility of mixing together diverse
operations without tuning. The resulting image is distorted
and saved. This process generates an augmented dataset.

Ablations. We run ablations on DeepAugment to under-
stand the contributions from the EDSR and CAE models
independently. Table 7 contains results of these experiments
on ImageNet-R and Table 6 contains results of these ex-
periments on ImageNet-C. In both tables, “DeepAugment
(EDSR)” and “DeepAugment (CAE)” refer to experiments

where we only use a single extra augmented training set (+
the standard training set), and train on those images.

Noise2Net. We show that untrained, randomly sampled
neural networks can provide useful deep augmentations,
highlighting the efficacy of the DeepAugment approach.
While in the main paper we use EDSR and CAE to cre-
ate DeepAugment augmentations, in this section we explore
the use of randomly initialized image-to-image networks
to generate diverse image augmentations. We propose a
DeepAugment method, Noise2Net.

In Noise2Net, the architecture and weights are randomly
sampled. Noise2Net is the composition of several residual
blocks: Block(x) = x + ε · fΘ(x), where Θ is randomly
initialized and ε is a parameter that controls the strength
of the augmentation. For all our experiments, we use 4
Res2Net blocks [3] and ε ∼ U(0.375, 0.75). The weights of
Noise2Net are resampled at every minibatch, and the dilation
and kernel sizes of all the convolutions used in Noise2Net are
randomly sampled every epoch. Hence Noise2Net augments
an image to an augmented image by processing the image
through a randomly sampled network with random weights.

Recall that in the case of EDSR and CAE, we used net-
works to generate a static dataset, and then we trained nor-
mally on that static dataset. This setup could not be done
on-the-fly. That is because we fed in one example at a time
with EDSR and CAE. If we pass the entire minibatch through

Noise Blur Weather Digital
Clean mCE Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

ResNet-50 23.9 76.7 80 82 83 75 89 78 80 78 75 66 57 71 85 77 77
+ ImageNet-21K Pretraining 22.4 65.8 61 64 63 69 84 68 74 69 71 61 53 53 81 54 63
+ SE (Self-Attention) 22.4 68.2 63 66 66 71 82 67 74 74 72 64 55 71 73 60 67
+ CBAM (Self-Attention) 22.4 70.0 67 68 68 74 83 71 76 73 72 65 54 70 79 62 67
+ `∞ Adversarial Training 46.2 94.0 91 92 95 97 86 92 88 93 99 118 104 111 90 72 81
+ Speckle Noise 24.2 68.3 51 47 55 70 83 77 80 76 71 66 57 70 82 72 69
+ Style Transfer 25.4 69.3 66 67 68 70 82 69 80 68 71 65 58 66 78 62 70
+ AugMix 22.5 65.3 67 66 68 64 79 59 64 69 68 65 54 57 74 60 66
+ DeepAugment 23.3 60.4 49 50 47 59 73 65 76 64 60 58 51 61 76 48 67
+ DeepAugment + AugMix 24.2 53.6 46 45 44 50 64 50 61 58 57 54 52 48 71 43 61

ResNet-152 (Larger Models) 21.7 69.3 73 73 76 67 81 66 74 71 68 62 51 67 76 69 65

ResNeXt-101 32×8d (Larger Models) 20.7 66.7 68 69 71 65 79 66 71 69 66 60 50 66 74 61 64
+ WSL Pretraining (1000× data) 17.8 51.7 49 50 51 53 72 55 63 53 51 42 37 41 67 40 51
+ DeepAugment + AugMix 20.1 44.5 36 35 34 43 55 42 55 48 48 47 43 39 59 34 50

Table 3: Clean Error, Corruption Error (CE), and mean CE (mCE) values for various models, and training methods on
ImageNet-C. The mCE value is computed by averaging across all 15 CE values. A CE value greater than 100 (e.g. adversarial
training on contrast) denotes worse performance than AlexNet. DeepAugment+AugMix improves robustness by over 23 mCE.

ImageNet-200 (%) ImageNet-R (%) Gap

ResNet-50 [4] 7.9 63.9 56.0
+ ImageNet-21K Pretraining (10× data) 7.0 62.8 55.8
+ CBAM (Self-Attention) 7.0 63.2 56.2
+ `∞ Adversarial Training 25.1 68.6 43.5
+ Speckle Noise 8.1 62.1 54.0
+ Style Transfer 8.9 58.5 49.6
+ AugMix 7.1 58.9 51.8
+ DeepAugment 7.5 57.8 50.3
+ DeepAugment + AugMix 8.0 53.2 45.2

ResNet-101 (Larger Models) 7.1 60.7 53.6
+ SE (Self-Attention) 6.7 61.0 54.3

ResNet-152 (Larger Models) 6.8 58.7 51.9
+ SE (Self-Attention) 6.6 60.0 53.4

ResNeXt-101 32×4d (Larger Models) 6.8 58.0 51.2
+ SE (Self-Attention) 5.9 59.6 53.7

ResNeXt-101 32×8d (Larger Models) 6.2 57.5 51.3
+ WSL Pretraining (1000× data) 4.1 24.2 20.1
+ DeepAugment + AugMix 6.1 47.9 41.8

Table 4: ImageNet-200 and ImageNet-Renditions error rates. ImageNet-21K and WSL Pretraining are Pretraining methods,
and pretraining gives mixed benefits. CBAM and SE are forms of Self-Attention, and these hurt robustness. ResNet-152 and
ResNeXt-101 32×8d test the impact of using Larger Models, and these help. Other methods augment data, and Style Transfer,
AugMix, and DeepAugment provide support for the Diverse Data Augmentation.

EDSR or CAE, we will end up applying the same augmen-
tation to all images in the minibatch, reducing stochasticity
and augmentation diversity. In contrast, Noise2Net enables
us to process batches of images on-the-fly and obviates the
need for creating a static augmented dataset.

In Noise2Net, each example is processed differently in
parallel, so we generate more diverse augmentations in real-

time. To make this possible, we use grouped convolutions. A
grouped convolution with number of groups = N will take a
set of kN channels as input, and apply N independent convo-
lutions on channels {1, . . . , k}, {k+1, . . . , 2k}, . . . , {(N−
1)k + 1, . . . , Nk}. Given a minibatch of size B, we can ap-
ply a randomly initialized grouped convolution with N = B
groups in order to apply a different random convolutional fil-

ImageNet-A (%)

ResNet-50 2.2
+ ImageNet-21K Pretraining (10× data) 11.4
+ Squeeze-and-Excitation (Self-Attention) 6.2
+ CBAM (Self-Attention) 6.9
+ `∞ Adversarial Training 1.7
+ Style Transfer 2.0
+ AugMix 3.8
+ DeepAugment 3.5
+ DeepAugment + AugMix 3.9
ResNet-152 (Larger Models) 6.1
ResNet-152+Squeeze-and-Excitation (Self-Attention) 9.4
Res2Net-50 v1b 14.6
Res2Net-152 v1b (Larger Models) 22.4
ResNeXt-101 (32× 8d) (Larger Models) 10.2
+ WSL Pretraining (1000× data) 45.4
+ DeepAugment + AugMix 11.5

Table 5: ImageNet-A top-1 accuracy.

ter to each element in the batch in a single forward pass. By
replacing all the convolutions in each Res2Net block with
a grouped convolution and randomly initializing network
weights, we arrive at Noise2Net, a variant of DeepAugment.
See Figure 2 for a high-level overview of Noise2Net and
Figure 3 for sample outputs.

We evaluate the Noise2Net variant of DeepAugment on
ImageNet-R. Table 7 shows that it outperforms the EDSR
and CAE variants of DeepAugment, even though the network
architecture is randomly sampled, its weights are random,
and the network is not trained. This demonstrates the flex-
ibility of the DeepAugment approach. Below is Pythonic
pseudocode for training a classifier using the Noise2Net
variant of DeepAugment.

1 def main ():
2 net. apply_weights (

deepAugment_getNetwork ()) # EDSR , CAE
, ...

3 for image in dataset : # May be the
ImageNet training set

4 if np. random . uniform () < 0.05: #
Arbitrary refresh prob

5 net. apply_weights (
deepAugment_getNetwork ())

6 new_image = net.
deepAugment_forwardPass (image)

7

8 def deepAugment_getNetwork ():
9 weights = load_clean_weights ()

10 weight_distortions =
sample_weight_distortions ()

11 for d in weight_distortions :
12 weights = apply_distortion (d,

weights)
13 return weights

14

15 def sample_weight_distortions ():
16 distortions = [
17 negate_weights ,
18 zero_weights ,
19 flip_transpose_weights ,
20 ...
21]
22

23 return random_subset (distortions)
24

25 def sample_signal_distortions ():
26 distortions = [
27 gelu ,
28 negate_signal_random_mask ,
29 flip_signal ,
30 ...
31]
32

33 return random_subset (distortions)
34

35

36 class Network ():
37 def apply_weights (weights):
38 ... # Apply given weight tensors

to network
39

40 # Clean forward pass. Compare to
deepAugment_forwardPass ()

41 def clean_forwardPass (X):
42 X = network . block1 (X)
43 X = network . block2 (X)
44 ...
45 X = network . blockN (X)
46 return X
47

48 # Our forward pass. Compare to
clean_forwardPass ()

49 def deepAugment_forwardPass (X):

50 # Returns a list of distortions ,
each of which

51 # will be applied at a different
layer.

52 signal_distortions =
sample_signal_distortions ()

53

54 X = network . block1 (X)
55 apply_layer_1_distortions (X,

signal_distortions)
56 X = network . block2 (X)
57 apply_layer_2_distortions (X,

signal_distortions)
58 ...
59 apply_layer_N −1 _distortions (X,

signal_distortions)
60 X = network . blockN (X)
61 apply_layer_N_distortions (X,

signal_distortions)
62

63 return X

1 def train_one_epoch (classifier ,
batch_size , dataloader):

2 noise2net = Noise2Net (batch_size =
batch_size)

3 for batch , target in dataloader :
4 noise2net . reload_weights ()
5 noise2net . set_epsilon (random .

uniform (0.375 , 0.75))
6 logits = model(noise2net . forward (

batch))
7 ... # Calculate loss and backrop
8

9 def train ():
10 for epoch in range(epochs):
11 train_one_epoch (classifier ,

batch_size , dataloader)
12

13 class DeepAugment_Noise2Net :
14 def __init__ (self , batch_size =5):
15 self. block1 = Res2NetBlock (

batch_size = batch_size)
16 self. block2 = Res2NetBlock (

batch_size = batch_size)
17 self. block3 = Res2NetBlock (

batch_size = batch_size)
18 self. block4 = Res2NetBlock (

batch_size = batch_size)
19

20 def reload_weights (self):
21 ... # Reload Network parameters
22

23 def set_epsilon (self , new_eps):
24 self. epsilon = new_eps
25

26 def forward (self , x):
27 x = x + self. block1 (x) ∗ self.

epsilon
28 x = x + self. block2 (x) ∗ self.

epsilon
29 x = x + self. block3 (x) ∗ self.

epsilon
30 x = x + self. block4 (x) ∗ self.

epsilon
31 return x

C. Further Dataset Descriptions
ImageNet-R Classes. The 200 ImageNet classes and their
WordNet IDs in ImageNet-R are as follows.

Goldfish, great white shark, hammerhead,
stingray, hen, ostrich, goldfinch, junco, bald
eagle, vulture, newt, axolotl, tree frog, iguana,
African chameleon, cobra, scorpion, tarantula,
centipede, peacock, lorikeet, hummingbird, tou-
can, duck, goose, black swan, koala, jellyfish,
snail, lobster, hermit crab, flamingo, american
egret, pelican, king penguin, grey whale, killer
whale, sea lion, chihuahua, shih tzu, afghan
hound, basset hound, beagle, bloodhound, italian
greyhound, whippet, weimaraner, yorkshire terrier,
boston terrier, scottish terrier, west highland white
terrier, golden retriever, labrador retriever, cocker
spaniels, collie, border collie, rottweiler, german
shepherd dog, boxer, french bulldog, saint bernard,
husky, dalmatian, pug, pomeranian, chow chow,
pembroke welsh corgi, toy poodle, standard poodle,
timber wolf, hyena, red fox, tabby cat, leopard,
snow leopard, lion, tiger, cheetah, polar bear,
meerkat, ladybug, fly, bee, ant, grasshopper,
cockroach, mantis, dragonfly, monarch butterfly,
starfish, wood rabbit, porcupine, fox squirrel,
beaver, guinea pig, zebra, pig, hippopotamus,
bison, gazelle, llama, skunk, badger, orangutan,
gorilla, chimpanzee, gibbon, baboon, panda,
eel, clown fish, puffer fish, accordion, ambulance,
assault rifle, backpack, barn, wheelbarrow, basket-
ball, bathtub, lighthouse, beer glass, binoculars,
birdhouse, bow tie, broom, bucket, cauldron,
candle, cannon, canoe, carousel, castle, mobile
phone, cowboy hat, electric guitar, fire engine,
flute, gasmask, grand piano, guillotine, hammer,
harmonica, harp, hatchet, jeep, joystick, lab
coat, lawn mower, lipstick, mailbox, missile,
mitten, parachute, pickup truck, pirate ship, re-
volver, rugby ball, sandal, saxophone, school
bus, schooner, shield, soccer ball, space shuttle,
spider web, steam locomotive, scarf, submarine,
tank, tennis ball, tractor, trombone, vase, violin,
military aircraft, wine bottle, ice cream, bagel,
pretzel, cheeseburger, hotdog, cabbage, broc-
coli, cucumber, bell pepper, mushroom, Granny
Smith, strawberry, lemon, pineapple, banana,
pomegranate, pizza, burrito, espresso, volcano,
baseball player, scuba diver, acorn.

n01443537, n01484850, n01494475, n01498041,
n01514859, n01518878, n01531178, n01534433,
n01614925, n01616318, n01630670, n01632777,
n01644373, n01677366, n01694178, n01748264,
n01770393, n01774750, n01784675, n01806143,

Noise Blur Weather Digital
Clean mCE Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

ResNet-50 23.9 76.7 80 82 83 75 89 78 80 78 75 66 57 71 85 77 77
+ DeepAugment (EDSR) 23.5 64.0 56 57 54 64 77 71 78 68 64 64 55 64 78 46 67
+ DeepAugment (CAE) 23.2 67.0 58 60 62 62 75 73 77 68 66 60 52 66 80 63 78
+ DeepAugment (Both) 23.3 60.4 49 50 47 59 73 65 76 64 60 58 51 61 76 48 67

Table 6: Clean Error, Corruption Error (CE), and mean CE (mCE) values for DeepAugment ablations on ImageNet-C. The
mCE value is computed by averaging across all 15 CE values.

ImageNet-200 (%) ImageNet-R (%) Gap

ResNet-50 7.9 63.9 56.0
+ DeepAugment (EDSR) 7.9 60.3 55.1
+ DeepAugment (CAE) 7.6 58.5 50.9
+ DeepAugment (EDSR + CAE) 7.5 57.8 50.3
+ DeepAugment (Noise2Net) 7.2 57.6 50.4

+ DeepAugment (All 3) 7.4 56.0 48.6

Table 7: DeepAugment ablations on ImageNet-200 and ImageNet-Renditions.

n01820546, n01833805, n01843383, n01847000,
n01855672, n01860187, n01882714, n01910747,
n01944390, n01983481, n01986214, n02007558,
n02009912, n02051845, n02056570, n02066245,
n02071294, n02077923, n02085620, n02086240,
n02088094, n02088238, n02088364, n02088466,
n02091032, n02091134, n02092339, n02094433,
n02096585, n02097298, n02098286, n02099601,
n02099712, n02102318, n02106030, n02106166,
n02106550, n02106662, n02108089, n02108915,
n02109525, n02110185, n02110341, n02110958,
n02112018, n02112137, n02113023, n02113624,
n02113799, n02114367, n02117135, n02119022,
n02123045, n02128385, n02128757, n02129165,
n02129604, n02130308, n02134084, n02138441,
n02165456, n02190166, n02206856, n02219486,
n02226429, n02233338, n02236044, n02268443,
n02279972, n02317335, n02325366, n02346627,
n02356798, n02363005, n02364673, n02391049,
n02395406, n02398521, n02410509, n02423022,
n02437616, n02445715, n02447366, n02480495,
n02480855, n02481823, n02483362, n02486410,
n02510455, n02526121, n02607072, n02655020,
n02672831, n02701002, n02749479, n02769748,
n02793495, n02797295, n02802426, n02808440,
n02814860, n02823750, n02841315, n02843684,
n02883205, n02906734, n02909870, n02939185,
n02948072, n02950826, n02951358, n02966193,
n02980441, n02992529, n03124170, n03272010,
n03345487, n03372029, n03424325, n03452741,
n03467068, n03481172, n03494278, n03495258,
n03498962, n03594945, n03602883, n03630383,

n03649909, n03676483, n03710193, n03773504,
n03775071, n03888257, n03930630, n03947888,
n04086273, n04118538, n04133789, n04141076,
n04146614, n04147183, n04192698, n04254680,
n04266014, n04275548, n04310018, n04325704,
n04347754, n04389033, n04409515, n04465501,
n04487394, n04522168, n04536866, n04552348,
n04591713, n07614500, n07693725, n07695742,
n07697313, n07697537, n07714571, n07714990,
n07718472, n07720875, n07734744, n07742313,
n07745940, n07749582, n07753275, n07753592,
n07768694, n07873807, n07880968, n07920052,
n09472597, n09835506, n10565667, n12267677.

Street View StoreFronts. The classes are

• auto shop

• bakery

• bank

• beauty sa-
lon

• car dealer

• car wash

• cell phone
store

• dentist

• discount
store

• dry cleaner

• furniture
store

• gas station

• gym

• hardware
store

• hotel

• liquor
store

• pharmacy

• religious
institution

• storage fa-
cility

• veterinary
care.

DeepFashion Remixed. The classes are

• short
sleeve top

• long sleeve
top

• short
sleeve out-
erwear

• long sleeve

outerwear

• vest

• sling

• shorts

• trousers

• skirt

• short
sleeve
dress

• long sleep
dress

• vest dress

• sling dress.

Size (small, moderate, or large) defines how much of the
image the article of clothing takes up. Occlusion (slight,
medium, or heavy) defines the degree to which the object is
occluded from the camera. Viewpoint (front, side/back, or
not worn) defines the camera position relative to the article
of clothing. Zoom (no zoom, medium, or large) defines how
much camera zoom was used to take the picture.

References
[1] Jia Deng, Wei Dong, Richard Socher, Li jia Li, Kai Li, and Li

Fei-Fei. ImageNet: A large-scale hierarchical image database.
CVPR, 2009. 8

[2] Shanghua Gao, Ming-Ming Cheng, Kai Zhao, Xinyu Zhang,
Ming-Hsuan Yang, and Philip H. S. Torr. Res2net: A new
multi-scale backbone architecture. IEEE transactions on
pattern analysis and machine intelligence, 2019. 1

[3] Shanghua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu Zhang,
Ming-Hsuan Yang, and Philip H.S. Torr. Res2net: A new
multi-scale backbone architecture. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2019. 2

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. corr
abs/1512.03385 (2015), 2015. 3

[5] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Stein-
hardt, and Dawn Song. Natural adversarial examples. ArXiv,
abs/1907.07174, 2019. 1

[6] Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. Net-
work randomization: A simple technique for generalization
in deep reinforcement learning. In ICLR, 2020. 2

[7] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for single
image super-resolution. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition workshops,
pages 136–144, 2017. 2

[8] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc
Huszár. Lossy image compression with compressive autoen-
coders. arXiv preprint arXiv:1703.00395, 2017. 2

[9] Haotao Wang, Tianlong Chen, Zhangyang Wang, and Kede
Ma. I am going mad: Maximum discrepancy competition for
comparing classifiers adaptively. In International Conference
on Learning Representations, 2020. 1

[10] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 2

Represented Distribution Shifts

ImageNet-Renditions artistic renditions (cartoons, graffiti, embroidery, graphics, origami,
paintings, sculptures, sketches, tattoos, toys, ...)

DeepFashion Remixed occlusion, size, viewpoint, zoom
StreetView StoreFronts camera, capture year, country

Table 8: Various distribution shifts represented in our three new benchmarks. ImageNet-Renditions is a new test set for
ImageNet trained models measuring robustness to various object renditions. DeepFashion Remixed and StreetView StoreFronts
each contain a training set and multiple test sets capturing a variety of distribution shifts.

Training set Testing images

ImageNet-R 1281167 30000
DFR 48000 42640, 7440, 28160, 10360, 480, 11040, 10520, 10640
SVSF 200000 10000, 10000, 10000, 8195, 9788

Table 9: Number of images in each training and test set. ImageNet-R training set refers to the ILSVRC 2012 training
set [1]. DeepFashion Remixed test sets are: in-distribution, occlusion - none/slight, occlusion - heavy, size - small, size -
large, viewpoint - frontal, viewpoint - not-worn, zoom-in - medium, zoom-in - large. StreetView StoreFronts test sets are:
in-distribution, capture year - 2018, capture year - 2017, camera system - new, country - France.

Figure 2: Parallel augmentation with Noise2Net. We collapse batches to the channel dimension to ensure that different
transformations are applied to each image in the batch. Feeding images into the network in the standard way would result in
the same augmentation being applied to each image, which is undesirable. The function fΘ(x) is a Res2Net block with all
convolutions replaced with grouped convolutions.

Figure 3: Example outputs of Noise2Net for different values of ε. Note ε = 0 is the original image.

