
Learn-to-Race: A Multimodal Control Environment for Autonomous Racing
Supplementary Material

A. Racing Simulator Details
A.1. Client and Server Information Exchange

The agents and the racing simulator act together as a
client-server system. The racing simulator includes both a
physics and graphics engine and provides numerous com-
munications mechanisms for a variety of use cases. Figure
1 summarises the simulator system architecture.

A.1.1 Simulator State

Management of the simulator’s state is done through a web-
socket interface, allowing for two-way communication and
for clients to update the state of the simulator including the
ability to:

• Change the map

• Change the type of vehicle

• Change the pose of the vehicle

• Change the input mode

• Turn on/off debugging routines

• Turn on/off sensors

• Modify sensor parameters

• Modify vehicle parameters

A.1.2 Simulator-to-Agent Communication

The simulator communicates to agents primarily with sen-
sory information including:

• LiDAR data from 4 independent sensors

• RADAR data from the vehicle’s radar sensor

• Images from the front-facing camera

• Pose information from the inertial measurement unit
on the vehicle

• Additional data about the state of the vehicle such as
brake pressure and tire speed per wheel

• Ground-truth information about other vehicles

• Ground-truth information about virtual objects

The camera publishes images using Transmission Con-
trol Protocol (TCP) while the others publish sensory data
using User Data Protocol (UDP) or over a Controller Area
Network (CAN). While the Learn-to-Race framework
exclusively supports software-in-the-loop simulation, and
therefore, only virtual CAN buses, the racing simulator
also supports hardware-in-the-loop simulation and physical
CAN buses.

A.1.3 Agent-to-Simulator Communication

Agents can communicate racing actions to the simulator in
a variety of ways:

• Via a keyboard or joystick for human drivers

• UDP packets with steering, acceleration, and gear re-
quests

• Through a safety layer with longitudinal acceleration
and curvature requests

• Via various API modes which allow for more granu-
lar control of the vehicle including individual motor
torques and brake pressure requests

Consistent with the simulator-to-agent above, agent-to-
simulator communication can be done over virtual or phys-
ical CAN buses.

A.2. Additional Visualisation

The racing simulator features multiple real world race-
tracks each with unique features that challenge human and
autonomous agents alike (see Figure 2).

B. Dataset Details
We generate a rich, multimodal dataset of ex-

pert demonstrations from the training racetracks
(Track01:Thruxton and Track02:Anglesey), in
order to facilitate pre-training of agents via, e.g., imitation



Auto-Generated API
(based on WebSocket & JSON RPC)

Environment
(UE4 Maps)

Vehicle Configuration
(Van Alpha, Van Beta, Bus Alpha, DevBot2, RoboCar, P1, Mustang)

Editor Mode Sensors Placement
Mode

Race Track
Generation

Auto-generated 
User Interface

PhysX Model Arrival Simple 4WD
Model

Arrival Advanced
4WD Model

Gazebo Copter
Model

Vehicle Dynamic Model Abstraction Layer

or

or

or
PhysX Model

Arrival Simple 4WD
Model

Arrival Advanced
4WD Model

HIL/SIL Abstraction Layer

or

or

Steering

Mechanics Dynamic Model
Abstraction Layer

Braking Motors

Differential Trans. ...

Vehicle Builder

GNSS & IMU Sensors

GPSd
Vendor-specific Protocols (via CAN and Ethernet)

LiDAR Sensors

General LiDAR based on DepthMap
General LiDAR based on RayCast
Vendor-specific Protocols (via Ethernet)

Camera Sensors

General Pinhole via ZMQ
General Fisheye via ZMQ

Radar Sensor Model

General Radar
Vendor-specific Protocols (via CAN)

Generic Ultrasonic Sensor

General Ultrasonic (via Ethernet)

Input Sub-system CAN Bus Sub-system Sensors Manager Serialize/deserialize
Sub-system

V2X/V2V 
Sub-system

External

CAN/UDP

CAN

UDP

UDP

WebSocket

Figure 1: Overview of the racing simulator.

learning (IL). The L2R dataset contains multi-sensory
input at a 100-millisecond resolution, in both the obser-
vation and action spaces. See Table 1 in the main paper
for a complete list of available modalities. The expert
demonstrations were collected using a model predictive
controller (MPC) that tracks the centerline of the race track
at a pre-specified reference speed. Important parameters
for this centerline MPC expert included acceleration range
of [-1, 1], steering range of [-1, 1], and image H×W
dimensions of 384 × 512. This training dataset contains
10,600 samples of each sensory and action dimension, in
this first version, which includes 9 complete laps around

the track. Demonstrations were saved as invidual step-wise
transitions, using numpy.savez compressed1, with
the following as dict fields in the data: (i) img with
shape (384, 512, 3); (ii) multimodal data with shape
(30, ); (iii) and action with shape (2, ). The fields in
multimodal data correspond to the vector dimension
mappings, indicated in Table 1.

Future version releases of L2R will include access to
new simulated tracks (also modelled after real tracks, from
around the world) as well as expert traces generated from

1https://numpy.org/doc/stable/reference/
generated/numpy.savez_compressed.html

https://numpy.org/doc/stable/reference/generated/numpy.savez_compressed.html
https://numpy.org/doc/stable/reference/generated/numpy.savez_compressed.html


Figure 2: First column, top four rows: the Thruxton Circuit race track, United Kingdom, is infamous for its long straightaways, high
speeds, and a difficult speed-trap near the finish line. Second column, top four rows: the North Road race track at Las Vegas Motor
Speedway, United States, includes the sharp turns and merciless speed traps and adds a vision-processing challenge for learning agents,
due to the lower contrast between the track and its surroundings. Third column, top four rows: the Anglesey Circuit race track, United
Kingdom, features two prominent straights and several harrowing turns. Last row: the racing simulator features multiple car models, sensor
placements, weather conditions, and additional tracks.

these additional tracks—across various weather scenarios,
in challenging multi-agent settings, and within dangerous
obstacle-avoidance conditions.

C. Additional Agent Details

C.1. RL-SAC Model Details

The RL-SAC agent learns from image embeddings rather
than raw pixels. The encoder used is a convolutional vari-
ational autoencoder (VAE) which was trained prior to, and



Table 1: Vector dimension mappings, to which the data
fields in multimodal data (30, ) correspond.

Array indices Description
0 steering request
1 gear request
2 mode
3, 4, 5 directional velocity in m/s
6, 7, 8 directional acceleration in m/s2

9, 10, 11 directional angular velocity
12, 13, 14 vehicle yaw, pitch, and roll, respectively
15, 16, 17 center of vehicle coordinates in (y, x, z)
18, 19, 20, 21 wheel revolutions per minute (per wheel)
22, 23, 24, 25 wheel braking (per wheel)
26, 27, 28, 29 wheel torque (per wheel)

Table 2: RL-SAC model hyperparameters

Hyperparameter Value
Buffer size 100,000
Gamma 0.99
Polyak 0.995
Learning rate 0.001
Alpha 0.2
Batch size 256
Start steps 1000
Learning steps 5

frozen during, the RL-SAC agent learning. The VAE was
trained to encode RGB images of with a width and height
of 144 pixels each into a latent space of size 32. The en-
coder architecture consisted of 4 convolutional layers, each
followed by a ReLu activation, with a kernel size and stride
of 4 and 2, respectively. The result of the convolutions was
passed through a single fully connected layer to the com-
pressed representation. Binary cross entropy loss and an
Adam optimiser were used for training.

The RL-SAC agent was trained for 1,000 episodes which
was approximately 1 million steps in the environment. We
trained this agent in vision-only mode, so it only had access
to the camera’s images. The agent passed the encoded im-
ages through two fully connected layers with 64 units each
and a final layer with an output shape of 2, matching the
environment’s action space. Gradient updates were taken at
the conclusion of episodes, and the training hyperparame-
ters are listed in Table 2.

C.2. MPC Agent Details

The MPC problem is summarised by Equation 1. The
objective (Equation 1a) is to minimise the tracking error
with respect to a reference trajectory, in this case the cen-
terline of the race track at a pre-specified reference speed,
with regularisation on actuations, over a planning horizon

of T time steps. Q and R are both diagonal matrices cor-
responding to cost weights for tracking reference states and
regularising actions. At the same time, the MPC respects
the system dynamics of the vehicle (Equation 1b), and al-
lowable action range (Equation 1c).

min
a1:T

T∑
t=1

[
(st − sref,i)

TQ(si − sref,i) + aT
i Rai

]
(1a)

s.t. st+1 = f(st,at), ∀t = 1, . . . , T (1b)

a ≤ at ≤ ā (1c)

Specifically, we characterise the vehicle with the kine-
matic bike model2 [2] given in Equation 2, where the state
is s = [x, y, v, φ], and the action is a = [a, δ]. x, y are the
vehicle location in local east, north, up (ENU) coordinates,
v is the vehicle speed, and φ is the yaw angle (measured
anti-clockwise from the local east-axis). a is the accelera-
tion, and δ is the steering angle at the front axle.

ẋ = v cos(φ) (2a)
ẏ = v sin(φ) (2b)
v̇ = a (2c)

φ̇ = v tan δ/L (2d)

A key challenge is that the ground truth vehicle param-
eters were not known to us. Aside from L defined as the
distance between the front and rear axle, the kinematic bike
model expects actions, i.e. acceleration and steering, in
physical units, while the environment expects commands
in [−1, 1]. The mapping is unknown to us, and non-linear
based on our observations. For instance, acceleration com-
mand = 1 results in smaller acceleration at higher speed. In
the current implementation, we make a simplifying assump-
tion that a = k1× acceleration command, and δ = k2×
steering command.

We use the iterative linear quadratic regulator (iLQR)
proposed in [3], which iteratively linearizes the non-linear
dynamics (Equation 2) along the current estimate of tra-
jectory, solves a linear quadratic regulator problem based
on the linearized dynamics, and repeats the process until
convergence. Specifically, we used the implementation for
iLQR from [1]. The parameters used by the MPC are sum-
marised in Table 3.

D. Metric Equations
We quantify the parametric curvature of a trajectory in

Eqn. 3, with x′t denoting dx
dt at time t, and we summarise

the curvature of the entire path as κrms in Eqn. 4:
2This set of equations is defined with respect to the back axle of the

vehicle and is used for generating expert demonstrations. The kinematic
bike model defined with respect to the centre of the vehicle is also included
in our code base.



Table 3: MPC parameters

Parameter Value
Q diag([1, 1, 1, 16])
R diag([0.1, 1])
vref 12.5 m/s
ā [1, 0.2]
a [−1,−0.2]
L 2.7 m
k1 10
k2 6
T 6

κt =
x′ty

′′
t − y′tx

′′
t(

(x′t)
2 + (y′t)

2
) 3

2

(3)

κrms =

√√√√ 1

T

(
T∑

t=0

κ2t

)
(4)

We measure Trajectory efficiency as ρ in Eqn. 5 based on
the curvature, κrms, of the race track and the racing agent’s
trajectory.

ρ =
κrms, racetrack

κrms, trajectory
(5)

References
[1] Brandon Amos, Ivan Dario Jimenez Rodriguez, Ja-

cob Sacks, Byron Boots, and J Zico Kolter. Differen-
tiable mpc for end-to-end planning and control. arXiv
preprint arXiv:1810.13400, 2018.

[2] Jason Kong, Mark Pfeiffer, Georg Schildbach, and
Francesco Borrelli. Kinematic and dynamic vehicle
models for autonomous driving control design. In 2015
IEEE Intelligent Vehicles Symposium (IV), pages 1094–
1099. IEEE, 2015.

[3] Weiwei Li and Emanuel Todorov. Iterative linear
quadratic regulator design for nonlinear biological
movement systems. In ICINCO (1), pages 222–229.
Citeseer, 2004.


