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1. Sketch of the implemented optical system

We show the optics diagram of our implemented proof-
of-concept optical system in Fig. 1. Our prototype cam-
era has a main objective lens coupled with a 4f system
with a phase modulating element at 2f . The intermedi-
ate image plane is formed by an 8mm objective lens (L1),
which is relayed by a pair of 75mm Fourier transform-
ing lenses (L2 and L3). L1 corresponds to a NAVITAR
MVL8M23 lens, and L2 and L3 are two Thorlabs AC254-
075-A-ML lenses in our setup. Using a beamsplitter (BS,
Thorlabs CCM1-BS013), we placed a deformable mirror
(DM, Thorlabs DMP40-P01) at the pupil plane at a distance
of 2f = 150mm from the intermediate image plane. Fi-
nally, we place a CANON EOS REBEL T5i at a distance
of 2f = 150mm from the DM, corresponding to the optical
setup’s image plane.
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Figure 1. Sketch of the implemented proof-of-concept optical sys-
tem. In our setup, we have three lenses (L1, L2, L3), one beam
splitter (BS), and one deformable mirror (DM). Here, the DM al-
lows us to use 15 aberrations via Zernike parameterization.

2. Face Recognition as Privacy Measure

In general, defining a specific metric to measure privacy
is not an easy task. In this work, we measure privacy using
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Figure 2. Face recognition performance on images from CFP-FP
acquired with our optimized lens.

face recognition. We use a Tensorflow implementation1 of
the Additive Angular Margin Loss for Deep Face Recogni-
tion (ArcFace) network[2]. ArcFace is a recently published,
efficient, and highly effective face recognition network that
incorporates margins in its loss function to obtain highly
discriminative features for face recognition.

Face Recognition results on CFP-FP dataset. We use
the ArcFace network to test the face recognition perfor-
mance on images acquired with our optimized lens. We ex-
perimented on three datasets: LFW, AgeDB-30, and CFP-
FP datasets. We generate ROC curves using three testing
approaches for each dataset and compare them with the
original ArcFace model tested on the original “non-private”
images. We refer to the first approach as the “Pretrained
model”, which uses the pretrained ArcFace model to test
the “private” version of each dataset. The second approach
consists of training the ArcFace model from scratch using
the private version of the MS-Celeb-1M dataset; we refer
to such an approach as the “Trained model”. Finally, in the
“Finetuned model” approach, we first load the pretrained
weights of the ArcFace model on original “non-private” im-
ages; then, we performed fine-tuning on the network with

1https://github.com/peteryuX/arcface-tf2
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Figure 3. Qualitative results on some example images acquired by
the prototype camera.

the private version of the MS-Celeb-1M dataset. We pre-
sented the results on the LFW and AgeDB-30 dataset in Fig.
4 of the main manuscript, and the results on the CFP-FP
dataset are shown in Fig. 2. Similar to the main manuscript
results, the ArcFace model performs poorly on the “private”
images generated by our optimized lens.

Compute LF in Eq. 18. In addition to the proposed
privacy-preserving loss, we explore the two additional loss
function approaches: LP1

, and LP2
, shown in Eq. 16 and

Eq. 17 of the main manuscript. In particular, for LP2 we
need to compute LF loss in Eq. 18 of the main manuscript,
which measures face similarity/dissimilarity between origi-
nal or input image x and “private” image y. To extract the
face regions from the images, we use the RetinaFace [3] de-
tector with a ResNet50 backbone. We generate three files
containing face labels for COCO 2017 dataset for the train-
ing, validation, and testing sets, respectively 2. Each file
contains lines with the COCO image filename and coordi-
nates (x1, y1), (x2, y2) specifying the upper-left and lower-
right corners of the face rectangle. All coordinates are pre-
sented as floating-point numbers in the range [0, 1] relative
to the specific image’s width and height. Then, with these
face region annotations, we crop faces from both x and y
and extract the embeddings using the ArcFace model with
pretrained weights loaded. We obtain the LF by comparing
both embedding vectors using the cosine similarity.

3. Additional Visual Results

Figure 5 present additional visual results when using our
optimized lens and compare them with the results from the
original OpenPose, which provides No-privacy pose esti-
mation and works on images acquired with standard cam-
eras. In the last two columns of the figure, we show ex-
ample failure cases of our method, which fails to estimate

2https://carloshinojosa.me/files/coco2017_
RetinaFace_annotations.zip

distant people’s pose as we reported in the main manuscript.
However, when a person is far from the camera, less is the
privacy concern; hence, our method’s privacy protection is
still useful in most cases. Also, Fig. 3 shows more qualita-
tive results acquired by our prototype camera.

4. Lightweight OpenPose
In general, any human pose estimation (HPE) network

can be adopted as the CNN-decoder of our proposed
privacy-preserving approach. This section reports some
results with the Lightweight OpenPose network (LOPPS)
as the CNN-decoder. The authors of the LOPPS aims at
decreasing the computational burden of the OpenPose[1]
(OPPS) Network by proposing three main changes: to use
a lighter backbone; using a single branch for PAF and key-
points predictions instead of the two branches of OPPS; and
replacing expensive 7×7 convolutions with 3×3, 1×1, and
3×3 with dilation of 2 convolutions blocks [9]. The original
paper of LOPPS replaces the VGG-19 backbone network of
OPPS with MobileNet family networks [5]. MobileNets are
built primarily from depthwise separable convolutions [10]
to reduce the computation in the first few layers. However,
in this work, we use the well-known ResNet-50 network [4]
as a replacement for the VGG-19 backbone. As the LOPPS
does not modify the OPPS loss function, we the same loss
function proposed in the main manuscript.

Training Details. Similar to the procedure described
in the main manuscript, we assume an aberration-free
freeform lens and use the pretrained weights of a Tensor-
flow implementation of LOPPS [7] as a starting point. Once
initializing the network with the previously learned weights,
we freeze the single branch of LOPPS and fine-tune the first
68 trainable layers of the Resnet backbone to learn to extract
human body features from the privacy image. We simulate
a sensor with a pixel size of 3.40µm and a resolution of
864 × 864 pixels. We consider the first q = 350 Zernike
coefficients in Noll notation to shape the surface profile φ.
The fourth Zernike coefficient (the defocus term) is initial-
ized, such that the lens has a focal length of f = 25mm.
The optical element is discretized with a 3.40µm feature
size on an 864×864 grid. We trained the end-to-end model
using Adam optimizer with a batch size of 24 and an initial
learning rate of 4× 10−5. We applied an exponential learn-
ing rate decay with a decay factor of 0.666 that is triggered
after 15K, 20K, 25K, and 28K training steps. We trained
the network for 50K steps (gradient updates), taking about
20 hours on an Nvidia TESLA V100-SXM2-32GB GPU.

Quantitative and Qualitative Results. Figure 6 shows
a visual comparison of our proposed method using our opti-
mized lens against the results from the original Lightweight
OpenPose (No-privacy pose estimation), which works on
images acquired with the standard lens. As shown, our pro-
posed privacy-preserving approach using LOPPS achieves
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Method Fine-tuned Layers PSNR SSIM AP AP50 AP75 APM APL AR
LOPPS [8] - - - 0.37 0.629 0.373 0.382 0.376 0.45
PP-LOPPS 68 16.34 0.631 0.237 0.487 0.259 0.266 0.228 0.302

Table 1. Comparisons on the COCO validation set. We com-
pare our method against the lightweight OpenPose (LOPPS) net-
work. The PP prefix stands for our proposed privacy-preserving
approach.

less degradation and keypoint prediction accuracy than our
proposed privacy-preserving approach using OPPS. How-
ever, the obtained low-quality images still provide privacy
protection for people while achieves good human pose esti-
mation. Besides, Table 1 reports the COCO keypoints eval-
uation results and the average of the PSNR and SSIM image
quality metrics among all images from the COCO 2017 val-
idation set. In the table, PP-LOPPS stands for our proposed
privacy-preserving approach for LOPPS.

5. Blind Deconvolution using GANs
In this work, we assume that the attacker has no access

to the camera hardware. The same assumption is made
by hardware-level privacy protection approaches we found
in the literature. Indeed, if the attacker has access to the
camera, the PSF can be estimated by imaging a point light
source. In Fig. 4 of the main manuscript, we explore the
worst scenario when an attacker exactly knows the Zernike
coefficients that lead to the PSF. In that case, a simple non-
blind deconvolution method can reconstruct the visual de-
tails from the defocus approach while our method is more
robust. Besides, our proposed approach achieves higher
HPE performance despite having more blur than, for in-
stance, a defocus lens. On the other hand, here we explore
the case when an attacker has no access to the hardware
but has a large set of blurred images with its respective non-
blurred version. In such a case, the attacker can train a blind
deconvolution network to try to recover the people’s identi-
ties from the private images.

We trained a blind deconvolution network (Deblur-
GAN3) [6] with 16000 sharp and blur images (ours) from
the COCO dataset during 500 epochs. Fig. 4 shows the
results (third row) of recovering the people identities (first
row) from ours blur images (second row) using the trained
network. As observed, reconstruction is challenging. The
network can reconstruct some objects (e.g., the fifth col-
umn’s image); however, the face details seem to be missed,
and the network cannot recover people’s identities.
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Figure 5. Qualitative results on example COCO 2017 images using the OpenPose [1] (OPPS) network as the CNN-decoder. We compare
our proposed privacy-preserving pose estimation results using our optimized lens with the Non-privacy approach using a standard lens.
The last two columns depict failure cases where we fail to estimate the pose of far distant people.

Figure 6. Qualitative results of some example images in the COCO 2017 dataset using the Lightweight OpenPose [9] (LOPPS) network
as the CNN-decoder. We compare our proposed privacy-preserving pose estimation results using our optimized lens with the Non-privacy
approach using a standard lens.


