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In this document, we provide more details of DMP and
more results on the Hpatches [1], ETH3D [12], TSS [15],
and PF-PASCAL [4].

1. Network Architecture

As shown in Fig. 1, our network consists of two parts:
feature extraction networks to extract deep features and
matching networks. Note that in the paper, a single-level
version of the networks are illustrated for brevity, while the
full model is formulated in a pyramidal fashion. In this sec-
tion, we will explain our full model.

Feature extraction network. Here, we explain feature
extraction networks in detail. We employ an adaptive res-
olution startegy introduced by [16] to let the network take
any resolution, which we down-sample the original input
images to 256×256. We then extract features from both the
original and down-sampled resolutions using pre-trained
backbone networks and freeze them during the optimization
and training. After the feature extraction, we additionally
use an adaptation layer to refine the features. Adaptation
layers are random initialized and separated for each pyra-
midal feature map in a residual fashion [5]. As described in
the paper, the backbone model could be directly optimized
in DMP framework, but we found that using an additional
adaptation layer to refine the backbone features and opti-
mizing the layer only boosts the performance drastically.

Specifically, we compute the residuals by adding 3 × 3,
5 × 5, 7 × 7 and 9 × 9 convolutional layers with padding
of 1, 2, 3 and 4, respectively, on top of each pyramidal
level. We set stride to 1 to ensure that the spatial resolution
is preserved. Given VGG-16 as backbone network, identi-
cal to [16], we employ the activation after Conv5-3 and
Conv4-3 for the resized (256 × 256) input images, and
Conv4-3 and Conv3-3 for the original resolution image,
which outputs spatial resolution of 16×16, 32×32, H

8 ×W
8

and H
4 × W

4 , respectively. The number of feature chan-
nels of each adaptaion layer are thus 512, 256, 256, and
128, respectively. On the contrary, if ResNet-101 is used as
backbone network, we employ the activation after Conv3
and Conv4 for the resized input, whereas for the original
resolution we employ Conv2 and Conv3. The number of

feature channels of each adaptaion layer are thus 1024, 512,
512, and 256, respectively. It should be noted that for ge-
ometric matching task, we use VGG features, while for se-
mantic matching task, we use both ResNet and VGG, which
by default, unless mentioned, all our models use VGG-16
features.

Matching network. We then provide additional details of
matching networks, which consists of two parts: cost com-
putation and inference modules. For the global correlation,
we compute the pairwise inner product between features
from coarsest level. For the local correlation, we employ
l = 4 for the search space in the target. As in [9, 16] we
feed global correlation into a inference module, which con-
sists of 5 feed-forward convolutional blocks with a 3 × 3
filter. The number of output channels of each layers are
128, 128, 96, 64, and 32, respectively. For the remaining
levels, we use an inference module designed for the local
correlation volume which infers the flow field similar to the
one in PWC-Net [14]. The numbers of output channels at
each layer are 128, 128, 96, 64, and 32, respectively and
the size spatial kernel of is also 3 × 3. The final output of
the inference module is computed by feeding into a linear
2D convolution. The soft-argmax [6] computes an output
by averaging all the spatial positions with weighted corre-
sponding probabilities. The temperature for the soft-argmax
is set to 0.02.

The flow field inferred at each level is up-sampled using
bilinear interpolation. From experiments, we observed that
using transposed convolution degraded the performance.
We thus employed bilinear interpolation at every pyramidal
layer.

2. Convergence Analysis Details

In the paper, we showed the comparison of AEE over
iteration between models as shown in Fig. 2 (Fig. 4 in
the paper). Here, we describe the details for this experi-
ment. For a fair comparison, we iterated 2k times for all the
test-time optimization methods, which include GLU-Net‡,
DMP, A-DMP and DMP†. We evaluated each method on
Hpatches [1] benchmark, which consists of 295 target im-
ages, and averaged the AEE at every 10-th iteration. Note
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Figure 1. Overview of DMP architecture. Overview of our proposed iterative architecture, which consists of feature extraction network
and matching network. Source and target images are first fed into feature backbone network to obtain deep features. Each pyramidal
features are then fed into adaptation layers and the refined features are obtained. Subsequently, the refined features are fed into a matching
network and the estimated flow is up-sampled to warp the next level feature. The final output consists of refined features from target image
and the flow field of size H

4
× W

4
.
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Figure 2. Convergence analysis of DMP.

that in Fig. 2, we only show the range of 0-400 for x-axis
as the AEE for all the methods except GLU-Net‡ converge.
To conduct experiment on GLU-Net‡, we simply replaced
the model to GLU-Net within our optimization implemen-

tation under the identical experimental setting to DMP test-
time optimization. We did not find noticeable differences
when we attempted optimizing with different hyperparam-
eter settings e.g., learning rate. We conducted experiment
on GLU-Net‡ to show that the several choices we made, in-
cluding architecture and loss, were critical for the untrained
network to guarantee a meaningful convergence.

3. Limitations
In this session, we would like to discuss the limitations of

DMP and its variants. One limitation that all the methods,
including DMP and its variants, is the time they take to con-
verge. Although with good initialization, the optimization
time required to obtain correspondences significantly re-
duces, our approach fundamentally isn’t applicable for real-
time applications. Furthermore, even though DMP attained
competitive results for standard benchmarks by optimizing
from untrained networks, it fails to find accurate correspon-
dences given difficult images, i.e., ETH3D interval 15. To
overcome, we pre-trained DMP to provide strong initializa-
tion, but this may result in weakening of DMP’s advantage,
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Figure 3. Example of the synthetic images [11].

an ability to avoid generalization issues. Although designed
to address difficult cases, A-DMP suffers from doubled op-
timization time. RANSAC-DMP successfully avoids this
challenge, but the use of RANSAC often yields unstable re-
sults that may lead to failure to find correspondences.

We proposed, for the first time, to find correspondences
between a pair of images by test-time optimization, and we
believe that further improvements could be made in this di-
rection.

4. Implementation and Experimental Details

We first pre-process the input images by centering the
mean and normalizing the values using the mean and stan-
dard deviation of ImageNet [2]. For DMP and A-DMP, we
initially set the learning rate to 3e−3 and divide it by 2 at
every 300 iterations. For DMP† and variants that exploit
RANSAC [13], we use learning rate of 1e−5. We use Adam
optimizer [7] with β1 = 0.9 and β2 = 0.999. We imple-
mented our model using PyTorch[10].

To obtain the randomly-augmented target for A-DMP,
we use the same kind of geometric transformation to GLU-
Net and DGC-Net. Specifically, Rocco et al. [11] generates
synthetic data using affine and thin-plate spline transforma-
tion which we additionally use homography transformation
as in DGC-Net as shown in Fig. 3. To conduct experiments
on variants of ours that utilize RANSAC to obtain coarsely
aligned pair of images, we followed the protocol of [13] to
obtain a pair of coarsely aligned images first and then fed
the aligned images into our network.

We additionally showed an ablation study on RANSAC-
Flow [13] in the paper, to validate the effect of test-time op-
timization. We first obtained coarsely aligned input images
and then implemented using the full loss function provided
in [13] for the test-time optimization and iterated 2000
times with identical hyperparameter setting to RANSAC-
Flow trained on Mega-Depth [8]. We did not find dras-
tic diffference when the matchability loss was not included
within the total loss. For evaluating test-time optimization
of RANSAC-Flow on original resolution of Hpatches, we
up-sampled the estimated flow using bilinear interpolation
and calculated the AEE and PCK.

5. More Results
In this section, we provide additional qualitative exam-

ples on the Hpatches [1], ETH3D [12], TSS [15], and PF-
PASCAL [4].

We first show more qualitative results of convergence
process of DMP. Given good initialization, DMP guarantees
a meaningful convergence, which also indicates that once
the warped image is similar enough to the target image, the
convergence process is boosted and DMP can successfully
correct the errors in the flow fields during the optimization
to find the optimal flow field. As shown in Fig. 4, the con-
vergence is boosted when the warped image is similar to the
target image.

For geometric matching task, DMP shows highly com-
petitive results , nearly approximating the ground-truth flow
as shown in Fig. 5. Note that our variants estimate ex-
tremely accurate flow fields, demonstrating the superiority
of our approach. Also we deliberately included the exam-
ples that DMP fails to find accurate correspondences while
other variants do better. Fig. 6 shows the qualitative com-
parison on ETH3D [12] dataset. All the results are from
the highest intervals, which demand addressing extreme
viewpoint changes. Note that our approaches, compared
to GLU-Net [16] which obtains satisfactory results, suc-
cessfully estimate the correspondence field between images
with extreme appearance variations.

Semantic matching task requires estimating correspon-
dence fields between images with intra-class variations.
Our works, compared to GLU-Net [16], consistently ob-
tain sharp and extremely accurate warped images as shown
in Fig. 7 and Fig. 8. We obtain results with fine details pre-
served and accurately aligned, which demonstrate the supe-
riority of our approaches on semantic matching task.
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Figure 4. Convergence of DMP. (a) source image, (b) target image, (c), (d), (e), (f), (g), and (h) iterative evolution of warped images
by DMP. The error signal received at each iteration helps to correct the flow field, which the predicted transformation fields become
progressively more accurate through iterative estimation.
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Figure 5. Qualitative results on the Hpatches benchmark [1]. (a) source and (b) target images, warped source images using corre-
spondences of (c) GLU-Net [16], (d) DMP, (e) DMP†, (f) RANSAC-DMP, and (g) Ground-truth. Here, we provide only the samples
with extremely large geometric variations to compare the outputs produced by each variants and GLU-Net. Note that DMP, starting from
untrained network, achieves competitive results against GLU-Net trained on a large-scale dataset. Thanks to RANSAC [3], DMP starts the
optimization with good initialization, which results RANSAC-DMP producing highly accurate flow fields.
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Figure 6. Qualitative results on the ETH3D benchmark [12]: (a) source and (b) target images, warped source images using correspondences
of (c) GLU-Net [16], (d) DMP, (e) A-DMP, and (f) DMP† . Note that our loss function allows error correction, allowing more optimal
estimation of flow fields.
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Figure 7. Qualitative results on the TSS [15] benchmarks. (a) source image, (b) target image, (c) ground-truth, (d) GLU-Net [16], (e)
DMP, and (f) DMP†-ResN. It is clearly visible that warped source images produced by our models resemble the target images. Note that
more accurate flow fields are estimated when ResNet is used for the feature backbone network.
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Figure 8. Qualitative results on the PF-PASCAL [4] benchmarks. (a) source image, (b) target image, (c) DMP, (d) A-DMP, (e) DMP†,
and (f) DMP†-ResN.


