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1. Additional qualitative results
In this section, we provide additional qualitative results

for better comparison with previous state-of-the-arts. Fig-
ure 1 shows the results of single-domain methods for both
artistic [3, 5, 7, 8, 9, 10] and photo-realistic [6, 11] style
transfer. In addition, Figure 2 shows the comparison with
previous multi-domain style transfer methods [1, 4]. Our
DSTNs outperform previous works on both domains.

Moreover, we conduct style transfer on high-resolution
images (4751 × 3168) which are shown in Figure 3,
and Figure 4. It is easy to recognize that DSTNs effectively
stylize global and local patches while preserving the origi-
nal semantic information. In addition, we provide additional
qualitative results of ablation study on the effectiveness of
domainness α in Figure 5.

2. Ablation study of the number of domain-
aware skip connections

In Figure 6, we conduct the ablation study to analyze
the effect of each skip connection. As discussed in [2], the
structural information is lost in deeper layers of the net-
work. By fully exploiting three skip-connections, DSTNs
produce the satisfactory photo-realistic stylized results.
With artistic references, our domain indicator produces the
higher domainness value thus the results are almost consis-
tent.

3. Adversarial Training via Multi-scale Dis-
criminator

In this section, we describe the details of the multi-scale
discriminator and the adversarial training. For adversarial
training, we label the original images from both datasets as
real, while stylized images are marked as fake. We adversar-
ially train our decoder and the discriminator so that DSTNs
are capable of conducting the stylization in more realistic
way.

To further enhance the performance, we adopt the multi-

scale discriminator which exploits not only the global tex-
ture but also local patch-wise contexts. The multi-scale dis-
criminator consists of four Conv blocks and one convolu-
tional layer as illustrated in Figure 7. We establish two
skip-connections on the first and third Conv blocks in order
to collect patch-wise features. Finally, the decoder of DSTN
and the discriminator are trained with the adversarial loss as
follows:

LDis
adv = EIs∼I∗

s
[logD(Is)] + EĨ∼Ifinal

[log(1−D(Ĩ)]

LDec
adv = EĨ∼Ifinal

[logD(Ĩ)],

(1)

where Is and Ĩ denote the real images and stylized results,
respectively.

4. Photo-realistic style transfer with segmenta-
tion maps

Following DPST [6] and WCT2 [11], DSTNs are also
capable of utilizing segmentation maps to maintain seman-
tic correspondence between content and reference images.
As shown in Figure 8, DSTN successfully produce photo-
realistic results with the help of segmentation maps.
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Figure 1. Qualitative comparisons with state-of-the-art models. The blue box indicates photo-realistic reference images and the red box
indicates artistic ones. We depict the stylized results from existing artistic style transfer models (b-g) and photo-realistic ones (h-i). Previous
methods produce unsatisfactory results when they receive images from the opposite domain. The results of (a) demonstrate that DSTNs
produce both photo-realistic and artistic well regardless of the domain of reference images.
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Figure 2. Comparison with previous state-of-the-arts for multi-domain style transfer.



Figure 3. Qualitative result of artistic style transfer with high resolution (4752×3168). The red box indicates artistic reference images, and
the green box indicates the content image.



Figure 4. Qualitative result of photo-realistic style transfer with high resolution (4752×3168). The blue box indicates photo-realistic
reference images, and the green box indicates the content image.
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Figure 5. Ablation study on the effect of domainness α.
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Figure 6. Ablation study on the domain-aware skip connections. αl denotes the domainness value from each domain-aware skip connection
on the level of l. The gray text (αl) indicates the removal of skip connection of corresponding level. We also display the zoomed patch
from the green box.
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Figure 7. Overview of the multi scale discriminator.
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Figure 8. Photo-realistic stylization results with segmentation maps.
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