
Supplementary Document for Structure-from-Sherds: Incremental 3D
Reassembly of Axially Symmetric Pots from Unordered and Mixed Fragment

Collections

Je Hyeong Hong* †

KIST, Hanyang University
jhh37@hanyang.ac.kr

Seong Jong Yoo*

KIST
yoosj@kist.re.kr

Muhammad Zeeshan Arshad
KIST

zeeshan@kist.re.kr

Young Min Kim
Seoul National University
youngmin.kim@snu.ac.kr

Jinwook Kim†

KIST
zinook@kist.re.kr

Abstract

This document clarifies some statements from the main
paper and illustrates further implementation details from
the method section. Additionally, a video illustrating our
pipeline can be found at supvid-1113.mp4.

0.1. Errata

We would like to correct some careless mistakes.
1. Base fragment reassembly: The sentence between

l.733-736 should read We achieve this by first gath-
ering a set of sherds with the base region from Sec.
3.3, merging all broken bases and using this number
with the number of full (unbroken) bases for initiating
the incremental sherd registration process. The merg-
ing process involves iteratively selecting an unmerged
partial base fragment as root (for incremental beam
search) and reassembling all possible pieces until all
partial base fragments are reassembled. (Please refer
to Fig. 4 from the main paper and the supplementary
video.)

2. Fracture surface normal: the fracture surface nor-
mal of an edge-line point (stated in l.641 of the main
paper) is different from the surface normal of the edge
line point which points towards the axis of symmetry.
The fracture surface normal of point j, l̂j ∈ S2, is the
vector pointing orthogonal to the local fracture surface
of the edge line point pj ∈ R3. It can be computed by
taking the cross product between the point j’s surface
normal (n̂j ∈ S2) and the vector joining point j and

*Both authors contributed equally to this work.
†Co-corresponding authors

Axis of symmetry
(top view)

Axis of symmetry
(top view)

A large fragment A small fragment

Figure 1. Visualization of uncertainties in the axis location for
differently-sized fragments. Large fragments have wide basin of
angle formed by the normals of the surface points, yielding a more
rounded uncertainty. On the other hand, comparatively small frag-
ments yield narrower basin of angle formed by the surface nor-
mals, yielding a stretched uncertainty region and leading to high
uncertainty in the axis location.

point j + 1, i.e.

l̂j :=
n̂j × (pj+1 − pj)

‖n̂j × (pj+1 − pj)‖2
(1)

3. Joint sherd alignment: (3) in l.698 of the main paper
should be a minimization over {Ri, ti}, where Ri ∈
SO(3) is the rotation matrix of sherd i and ti ∈ R3 is
the translation of sherd i. Additionally, Ei should be
Ei and Ej should be Ej to comply with our unified
notation regarding the sherd number.

4. Utilizing rims for match pruning: During paper
trimming, we accidentally left out the fact that we uti-
lize the rim information during LCS matching to prune
out false matches (i.e. matches involving a rim seg-
ment which is unrealistic). (Sec. 1.2)

5. Experimental settings can be found in Sec. 0.4.

0.2. Uncertainty in translation of the symmetric axis

Suppose each surface point p ∈ R3 has some degree
of noise (noted in blue) in its surface normal direction (in
orange). When the noise distribution is accumulated over
the surface points, a large fragment in Fig. 1 shows a well-
closed noise distribution. On the other hand, a small frag-
ment shows a longer accumulated noise distribution due to
the narrow basin of angle formed by the surface points,
leading to high uncertainty in the axis translation.

0.3. Our global method implementation

Many studies on reassembly of axially symmetric pots
have not disclosed their codes, making it difficult to com-
pare fairly between the methods.

As the second best choice, we implemented a global
method with similar architecture to the ones in structure-
from-motion [5, 3], first performing pairwise matches, sec-
ond pruning these matches by inducing loop constraints
(that the overall transformation around a loop should iden-
tity for rotation and zero for translation) and geometrically
verifying scheme(3D overlap test and profile curve check),
third using the maximum spanning tree (MST) algorithm to
find initial rotation values and last performing joint sherd
alignments (see Algorithm 1).

The global method failed to reconstruct a single pot from
the 5 pots even in the single pot reassembly environment.
After a series of debugging, we realized this is due to the
global method being susceptible to false pairwise matches
as shown in Fig. 3 (even after cycle filtering). The same
figure shows the global pipeline succeeding when the false
positive matches are removed. This implies the reassem-
bly algorithms are encountering more false positive matches
than previously anticipated. Some of these are difficult to
prune out just by looking at the loop constraints, further
demonstrating a need for an incremental method.

0.4. Experimental conditions

Computer specifications We used two different com-
puters for the pipeline. For the preprocessing (feature ex-
traction) part, runtimes were reported from a workstation
with i7-7700 (3.6GHz) and 32GB of RAM. For the re-
assembly part, we used a workstation with a Ryzen 3960X
(3.8 GHz) CPU and 128GB RAM.

Optimization settings We used the Ceres solver li-
brary [1] for all steps involving nonlinear optimization (e.g.
refinement, sherd alignment). We employed the Sparse
Schur complement solver (with SuiteSparse) with the func-
tion tolerance value set to 10−6.

For all rotation matrix-related computations, we used the
axis-angle parameterization.

Number of iterations in ICP For refining pairwise
matches using the ICP algorithm, the inner loop of opti-
mizing over the correspondences is solved using the Ceres

1 2

4 3

1 2

4 3

1 2

4 3

Initial
matches

Incremental
method

Global
method

Figure 2. An example showing the potential advantage of an in-
cremental approach. Each node denotes a pot sherd, and each edge
is a pairwise match between the connected sherds (true positives
are in black, false positives in red and false negatives in dotted
grey). (Two different matches are initially formed between frag-
ments 2 and 3.) If the incremental method starts from sherd 3 and
registers sherd 2 correctly, its ability to refine the underlying model
may lead to detection of previously undiscovered matches 1-2 and
2-4 and subsequently flag 1-4 as false positive. On the other hand,
the global approach can only prune initial matches at best, poten-
tially leading to missing or incorrect arrangement of sherd 1.

Algorithm 1 Our global registration method
Input: a graph G(V,E) formed by pairwise matches
(edges, {E}) between sherds (nodes, {V })

1: Find all possible unique cycles formed by edges
2: for each cycle do
3: Compute the overall rotation and translation across

the cycle
4: if the cycle rotation≈ I (< 30◦) and the cycle trans-

lation close to 0 (< 20mm) then
5: perform sherd alignment (Sec. 5.3 of the paper) be-

tween the participating sherds
6: Perform geometric verification (Sec. 1.2.3)
7: end if
8: if cycle is geometrically plausible then
9: # inliers is accrued to the participating edges of the

cycle
10: end if
11: end for
12: Find maximum inlier spanning tree from filtered graph

to find the absolute transformations {Ri, ti}.
13: Refine individual sherd transformation by performing

point-to-line ICP across all edge lines.
Outputs: sherd transformations {Ri, ti}

solver with maximum of 50 iterations. The outer loop
of ICP (comprising 1 alternating loop of correspondence
search followed by correspondence minimization) is solved
for maximum of 100 iterations. In both cases, the function
tolerance value is set to 10−6.

For ICP after adding a sherd, the settings are the same as
above. For ICP during joint sherd alignment (which is the
final step in each iteration of sherd registration), the outer
loop iteration is set to maximum of 200 for convergence.

Figure 3. Some more false positive examples (pot B) demonstrat-
ing some false positive cycles which are visually indistinguishable.
This leads to failures in the global method, necessitating a beam
search-based incremental reassembly approach. (True configura-
tions in green and false in red.)

1. Implementation details

1.1. Feature extraction

1.1.1 Interior and exterior surface extraction

We achieve this by segmenting the point cloud using the
region growing algorithm [4]. For each point, a neighboring
point (within nb = 10 neighbouring points) is considered as
part of the same surface if the angle between the normals of
the two points is less than τθ, and the curvature value of the
neighboring point is less than τκ. This yields a set of point
clusters with each on the same smooth surface.

We set τθ=4 and τκ=1 such that the inner and outer
surfaces are separated from the fractured regions and seg-
mented into their own individual clusters (see Fig. 4). Then,
we select the 2 largest clusters, which correspond to the in-
ner and outer surface clusters for large-enough fragments.
Segmenting between inner and outer surfaces is carried out
after estimating the axis of symmetry.

Decorative part removal For the fragments containing
decorative parts or their remains (e.g. a handle or a nose),
above parameters also segment those regions, enabling us
to exclude these parts from the inner and outer surfaces.

1.1.2 Interior and exterior surface classification

From above, we derive two sets of surfaces one of which is
the exterior surface and the other is the interior surface.

To classify each surface correctly, we project a ray from
each point on the surface p ∈ R3 along its surface normal
direction n̂ ∈ S2 and check where it meets the axis of sym-
metry (in practice where it makes the shortest distance be-
tween the symmetric axis and the projected ray). Then, we
check whether this point of (near-)intersection is along the

𝜏𝜃 = 1

𝜏 𝜅
=
1

𝜏𝜃 = 4 𝜏𝜃 = 8 𝜏𝜃 = 12 𝜏𝜃 = 16

(a) Results for different τθ (b) Decorative part removal
Figure 4. Segmentation results using the region growing algo-
rithm in CGAL [4]. Our choice of hyperparameters (τθ=4, τκ=1)
perfectly removes the non-smooth decorative parts in pot C.

Axis of symmetry

𝐩𝐩
�𝐧𝐧

Figure 5. An illustration showing a method for correctly classify-
ing interior and exterior surfaces. We project a ray from each point
p along its surface normal n̂ and check where it meets (or is the
closest to) the axis of symmetry. Ideally, the interior surface points
will have their rays intersecting the axis along the respective posi-
tive normal directions, while the exterior surface points will have
them along the respective negative normal directions.

positive surface normal direction from the point p or neg-
ative surface normal direction (i.e. opposite). As shown in
Fig. 5, if the surface is on the interior side, then the point of
intersection should be along the positive normal direction,
and if the surface is on the exterior side, then the point of
intersection is along the negative normal direction.

We test two configurations (i.e. inner & outer vs outer
& inner for the two surfaces) and choose the configuration
with more number of surface points from both surfaces sat-
isfying above geometry (just need to check if the scalar co-
efficient of the ray’s normal is positive or negative).

1.1.3 Edge line extraction and segmentation

The edge line extraction starts with getting the boundary of
the inner point cloud using boundary-estimation from the
PCL library [2]. We then sample and sequence these points
in order to have an equal distance, d between each point.
We set this d = 1.9mm for this work.

Setting the order of the edge line In order to effi-
ciently match edge lines using our LCS descriptor matching
algorithm, we need to fix the ordering of the edge line of
each sherd’s inner surface to either a clockwise or an anti-
clockwise direction (otherwise, we will have to test each
pair of sherds twice more times due to ambiguity in order-
ing, once clockwise and once anticlockwise).

We achieve this by first computing the mean point p̄ ∈

Algorithm 2 Our implementation of the LCS algorithm
Inputs: quantized descriptor matrix of sherd A and B

1: n← number of edge line points in sherd A
2: m← number of edge line points in sherd B
3: Create a 2D array D ∈ RN+1×M+1

4: for i = 1, .., N + 1 and j = 1, ..,M + 1 do
5: e← f(pAi)− f(pBj)

6: if i == 1 or j == 1 or pAi ∈ rim or pBj ∈ rim or
e > δe then

7: Di,j ← 0
8: else if e < δe then
9: Di,j ← Di−1,j−1 + 1

10: if Di,j > lm then
11: Append (Di,j , i, j) to IAB

12: Delete previous entry (Di−1,j−1, i−1, j−1) from
IAB

13: end if
14: end if
15: end for

Outputs: set of matching intervals IAB

R3 of the edge line points {p}. Then, for each point pj , we
draw vectors pj − p̄ and pj+1 − p̄ and check if the cross
product vector (pj−p̄)×(pj+1−p̄) is in the same direction
as its computed normal n̂j (i.e. their dot product is greater
than 0). If above is the case for the majority of points, then
the edge line is aligned in the anti-clockwise direction, and
vice versa. We set each edge line to be in the anti-clockwise
direction.

Computing surface normals Though we could com-
pute the normals for these points from the original point
clouds, however, the normals at the edge of surface are
not always exact. Hence, we fit a B-spline surface on the
inner point cloud and get the correct normals for these
points through the fitted B-spline surface. This sequence
of equally spaced points, combined with B-spline surface
based normals are from here on referred to as the edge line.

Edge line segmentation The algorithm for segmenting
the edge line relies on the detection of corners and sharp
curves. For an edge line with points p1, p2, p3, . . . , pn. For
a threshold of n = 10, for each point pj , we draw a line A
between points pj−10 and pj+10. Then we get the shortest
distance d between the point pj and the line A. The dis-
tance d is smaller when the edge line is more straight and
larger when the edge line curves. We then find peaks in the
value of d and identify them as the endpoints of edge line
segments.

1.1.4 Thickness computation

For each point p ∈ R3 on the edge line on the inner sur-
face, we extend the surface normal to project a ray in the

Algorithm 3 Clustering matching intervals
Inputs: set of raw matching intervals IAB

1: Create an empty set of clusters C and an empty set
I∗AB

2: l← 0
3: for each interval IABk in IAB do
4: if the midpoint of IABk is far from all intervals in C

(< 20mm) then
5: Assign a new cluster by defining a new set Cl and

adding Cl to C
6: l← l + 1
7: Add IABk to Cl
8: else
9: Add IABk to the closest cluster Cm

10: end if
11: end for
12: for each cluster set Cm ∈ C do
13: Find longest matching interval IABk ∈ Cm and add

to I∗AB

14: end for
Outputs: pruned set of matching intervals (I∗AB)

(a) Point-to-
point ICP
(point-wise
distances only)

(b) Point-
to-point ICP
(point-wise
normals only)

(c) Point-to-
point ICP

(d) Point-to-line
ICP

Figure 6. Pairwise ICP results based on different cost functions.
(c) is better than (a) or (b) but is slightly misaligned. (d) shows the
optimal matching result.

opposite direction towards the outer surface. We then find
a point q ∈ R3 that lies on the outer surface that is closest
to that ray and also satisfies the following two conditions:
(a) The distance between the point and the ray is within a
distance threshold (1 mm) (b) The direction of (p − q) is
opposite direction of n̂p The thickness is then measured as
the distance between the points p and q.

1.2. Pairwise matching

1.2.1 Descriptor matching

The inputs of the pairwise matching process are i) a descrip-
tor matrix of sherd A formed by column-stacking descrip-
tor vectors {fj} (each fj ∈ R4) for each (inner surface)
edge line point from sherd A, and ii) a descriptor matrix
of the same nature from sherd B. Each descriptor matrix is
quantized every 0.15 unit except for the thickness which is
quantized per 0.2 due to its practically lower stability.

The output of the matching process is the set of matching
intervals IAB between sherds A and B, where the set IAB

comprises matching intervals {IABk } and each matching in-
terval IABk is defined as an array of 3 numbers, namely the
length of the matching interval, the interval end point in-
dex (inclusive) for sherd A and the interval end point index
(inclusive) for sherd B.

The process runs in two steps as follows:
1. In order to get the set of matching intervals (IAB =
{IABk }), the quantized descriptors are compared on a
point-by-point basis, and the interval is defined as the
region which continuously satisfies each element of
the error vector between the compared descriptors be-
ing less than the correspoding element of the threshold
vector δe = [0.45, 0.45, 0.45, 0.8]> (see Algorithm 2).

2. As step 1 yields multiple similar matching intervals,
we cluster these intervals by selecting the longest inter-
val from each cluster. The number of clusters is jointly
estimated using a greedy algorithm in Algorithm 3.

Pruning via rim constraints If the LCS outputs a
cluster around the rim segment, then we discard the match
(since matching along the rim part is infeasible). This re-
sults in nearly 1/3 drop in the number of matches, all of
which are false positives.

1.2.2 Refining matches

Figure. 6 shows our reason for adopting the point-to-line
ICP method rather than point-to-point, that it shows the best
matching performance in our application.

We define the transformation of sherd A as TA, which
consists of rotation RA ∈ SO(3) and translation tA ∈ R3.
If use the notation (i, j) to denote the correspondence be-
tween the i-th edge line point of sherd A (pAi ∈ R3) and
the j-th edge line point of sherd B (pBj ∈ R3), the corre-
spondence distance term dij(T

A, TB) can be expressed as
(4), the correspondence normal deviation term eij(T

A, TB)
as (5) and the rim consistency term gi(T

A, r, h) as (6).
Then point-to-line ICP (P2L ICP) can be defined as (2) and
point-to-point ICP (P2P ICP) is using mij(T

A, TB) func-
tion(defined as (7)) instead of dij(TA, TB) at same the equa-
tion which can be defined as (3).

min
TA,TB ,r,h

∑
(i,j)∈ΩAB

ρd(d
2
ij(T

A, TB)) + λρe(e
2
ij(T

A, TB))

+ ν
∑

E∈A,B

∑
i∈ΨE

ρg(g
2
i (TE , r, h)) (2)

min
TA,TB ,r,h

∑
(i,j)∈ΩAB

ρd(||mij(T
A, TB)||22) + λρe(e

2
ij(T

A, TB))

+ ν
∑

E∈A,B

∑
i∈ΨE

ρg(g
2
i (TE , r, h)) (3)

Iteration ICP type ρd ρe ρg λ ν
First P2P 5 2 5 3 1.5
Second P2L 5 5 5 3 1.5

Table 1. Pairwise ICP implementation details

Figure 7. Example of a radial overlap case (which is false and thus
discarded) from Sec. 1.2.3. Red line is the overlapped region.

where ρd, ρe and ρg are robust kernels to suppress out-
lier correspondences, ΩAB is the set of edge line correspon-
dences between sherds A and B, ΨE is the set of edge line
points classified as rim in sherd E (A or B), l̂i is estimated
fracture surface normal of i-th point defined as (8). We use
median value of radius and height as the initial value of r̄
and h̄ at (6). In order to converge stably, while minimizing
correspondence distances, we solve the equation (2) twice
with different settings as shown in Table 1.

dij(T
A, TB) := d(pAi , n̂

A
i ,p

B
j , n̂

B
j , T

A, TB)

= ||RA l̂Ai ·mij(T
A, TB)||22 + ||RB l̂Bj ·mij(T

A, TB)||22
+ ||RAn̂Ai ·mij(T

A, TB)||22 + ||RBn̂Bj ·mij(T
A, TB)||22

(4)

eij(T
A, TB) := e(n̂Ai , n̂

B
j , T

A, TB)

= ||RAn̂Ai − RBn̂Bj ||22 (5)

gi(T
A, r, h) := g(pAi , T

A, r, h)

= ||r̄ − r(RApAi + tA)||22 + ||h̄− h(RApAi + tA)||22 (6)

mij(T
A, TB) := m(pAi , n̂

A
i ,p

B
j , n̂

B
j , T

A, TB)

= RApAi + tA − RBpBj + tB (7)

l̂i := (n̂i × (pi+1 − pi))/||n̂i × (pi+1 − pi)||2 (8)

1.2.3 Geometric verification

Checking potential overlaps
Our overlap test illustratd in Algorithm 4 is designed for

detecting intersections in 3D. The two conditions with as-
terisks (∗) in Algorithm 4 are designed to extract potential
areas of overlap and detect radial overlap cases, which are:

Algorithm 4 Algorithm for checking overlaps
Inputs: edge lines for sherds A ({pA}) and B ({pB})

1: Find a set of correspondence pairs CAB between {pA}
and {pB}, where CAB := {CABj with CABj :=

(pAj ,p
B
j)})

2: Select a region (i.e. a range of correspondence pairs)
for testing potential overlap between the two edge lines
based on one of two conditions (∗) listed in Sec. 1.2.3.

3: for each correspondence pair (CABj) in the investigated
region do

4: if CABj satisfies at least one of the two conditions (†)
then

5: Area of overlap← Area of overlap +
∥∥pAj − pBj

∥∥
2

6: end if
7: end for

Outputs: Area of overlap

Algorithm 5 Checking the consistency of the profile curve
1: Inputs: edge line points ({pij}) across matched sherds
2: result← true
3: Align the edge points {pij} to the axis of symmetry (z+

is now in the axis direction)
4: Compute the radii of edge line points ({rij}) from the

axis-aligned x and y coordinate values.
5: Sort edge line points in ascending order of z values.
6: segment line points {pij} into bins every w (5 mm) in
z.

7: for each bin of line points do
8: Fit a line using orthogonal regression.
9: Compute standard deviation (σ) of orthogonal dis-

tance errors between the line of best fit and the edge
line points.

10: if σ > δd then
11: result← fail
12: break
13: end if
14: end for
15: Output: result

1.
∥∥pAj − pBj

∥∥
2
< d, and

2. nAj · nBj > 0 and | (p
A
j −p

B
j)

|pA
j ||pB

j |
| · nAj > θ

The first condition extracts the likely correspondence
pairs between edge line of sherd A and that of sherd B (we
set d = 5mm)). The second condition detects the radial
direction overlap as shown in Fig. 7.

If the region of interest is detected, we go through two
further tests to check for different overlap cases as follows:

1. l̂Aj · l̂Bj > 0 and
∥∥pAj − pBj

∥∥
2
< d (this occurs when

one piece is almost submerged into another piece),
2. l̂Aj · (pBj − pAj) < 0 and l̂Bj · (pBj − pAj) > 0 (this

(a) correct configuration (b) incorrect case detected by the
profile curve test

Figure 8. The left side of (a) and (b) show the edge lines of
matched sherds, and the right side of (a) and (b) show the cor-
responding profile curves (with locally fitted lines in green). In
(b), the overlap test fails to find a false positive configuration but
the profile curve test detects it.

occurs when two pieces match as expected but with
some overlaps),

where lij is the fracture surface normal of point j in sherd i
defined in (1).

If the overlapped region is greater than 50 mm2, then the
pair of sherds A and B is removed from the list of matches.

Checking the profile curve Overlap test on its own
cannot filter out all false positive matches as shown in
Fig. 3. Therefore, we implemented a step checking the con-
sistency of the profile curve. The profile curve is a 2D rz-
plane projection of the pot, and each axially symmetric pot
should observe a single and continuous curve (see Fig. 8).

Based on the above property we divide the profile curve
into segments every 5mm in z, and fit a line onto each seg-
ment. We then check the error between the fitted line and
the points in each segment. If the standard deviation of this
error across all segments is above 5 mm, then the configu-
ration is deemed false due to an inconsistent profile curve.
Our algorithm is illustrated in Algorithm 5.

1.3. Incremental sherd registration with multi-root
beam search

1.3.1 Sherd registration

When registering a new sherd (denoted as sherd D) to the
reassembled sherds {C}, we align the coordinates by the
sherd C’s axis of symmetry (defined as the z-axis without
loss of generality) and keep it fixed. Noting the notations
from (2), we essentially solve

min
TD

∑
E∈{C}

∑
(i,j)∈ΩDE

ρd(d
2
ij(T

D, TE)) + λρe(e
2
ij(T

D, TE))

+ µ
∑
i∈ΩD

ρf (f2
i (TD)) + ν

∑
i∈ΨD

ρg(g
2
i (TD, r, h)) (9)

where ΩD is the set of edge line points in sherdD, ΨD is
a subset of ΩD classified as rim, and fi is a measure of the

Figure 9. An exemplary illustration of our beam search pipeline for the case of k = 3 and b = 3.

Iteration ICP type ρd ρe ρf ρg λ ν µ
First P2P 5 2 0 1.5 3 1 0
Second P2L 5 2 0 1.5 3 1 0
Third P2L 5 2 1.5 1.5 1 1 0.1

Table 2. Registration ICP implementation details

axial consistency in sherd D. Similar with pairwise match-
ing as mentioned in Sec 1.2.2, we utilize the ICP algorithm
and solve the equation (9) three times to make it stably con-
verge with the different settings as shown in Table 2.

1.3.2 Batch sherd alignment

We refine all reassembled sherds by utilizing ICP algorithm.
When {C} is the set of reassembled sherds, and {TC} is the
set of its transformation matrix, then by noting notations
from (2) and (9), we solve

min
{TC},r,h

∑
(E,F)∈Ω{C}

∑
(i,j)∈ΩEF

(
ρd(d

2
ij(T

E , TF))

+ λρe(e
2
ij(T

E , TF))
)

+
∑

F∈Ω{C}

(
µ
∑
i∈ΩF

ρf (f2
i (TF))

+ ν
∑
i∈ΨF

ρg(g
2
i (TF , r, h))

)
(10)

where (E, F) denote a pair of sherds in set of sherd pairs
Ω{C}, ΨF is the set of ege line points classified as rim in
sherd F . Again, we solve equation (10) two times to make
it stably converge with the different settings as shown in
Table 3.

Iteration ICP type ρd ρe ρf ρg λ ν µ
First P2L 5 2 0 0 2 0 0
Second P2P 5 2 1.5 5.0 2 1 0.3

Table 3. Batch sherd alignment ICP implementation details

1.3.3 Multi-root beam search

An illustration of our incremental sherd registration algo-
rithm can be found in Fig. 9. This algorithm can also be
applied to reassembling base fragments but using a single
root (an unused partial base fragment) only.

Generating a priority list for branch extension When
deciding which sherds to try out for the ”Extension” step in
Step 1 of Fig. 9, we rely on the priority ranking of sherds de-
termined by the adjusted number of inliers (defined in l.680
of the main paper).

One important thing to note is that if two pairwise
matches yield the same configuration with the newly added
sherd, then the two matches are merged as a single candi-
date configuration in the priority list with the adjusted num-
ber of inliers being the sum of these from the two matches
(i.e. being more likely). For example, suppose sherds A
and B are already merged, and we find a pairwise match
between sherd A and new sherd C with V adjusted number
of inliers, and another match between sherd B and sherd C
with W adjusted number of inliers. If both matches lead to
the same transformation matrix for sherd C (i.e. same RC , tc

up to some threshold values), then the two configurations
(A − C and B − C) are merged as a single configuration
with W + V adjusted number of inliers. This encourages
fragments with more neighboring sherds to be favored.

2. Reassembly results
Fig. 10 shows single reconstruction result about pot D

and E in various top k and extension b values. White mesh

and green break line indicate correct configurations, and red
mesh and break line demonstrate false positive configura-
tions. It is difficult to detect false positives without refer-
ring to the ground truth. Fig. 11-12 illustrate mixed pots
reconstruction results across various settings of ranks (k)
and branches (b). Increasing the values of k and b increases
the number of correctly configured sherds as anticipated.

References
[1] Sameer Agarwal, Keir Mierle, and Others. Ceres solver.

http://ceres-solver.org. 2
[2] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point

Cloud Library (PCL). In IEEE International Conference on
Robotics and Automation (ICRA), Shanghai, China, May 9-13
2011. 3

[3] Chris Sweeney. Theia multiview geometry library: Tutorial &
reference. http://theia-sfm.org. 2

[4] The CGAL Project. CGAL User and Reference Manual.
CGAL Editorial Board, 5.2 edition, 2020. 3

[5] C. Zach, M. Klopschitz, and M. Pollefeys. Disambiguating vi-
sual relations using loop constraints. In 2010 IEEE Computer
Society Conference on Computer Vision and Pattern Recogni-
tion, pages 1426–1433, 2010. 2

http://ceres-solver.org
http://theia-sfm.org

(a) Pot D, Origin (b) Pot D, k = 5 and b = 3 (c) Pot D, k = 10 and b = 5 (d) Pot D, k = 20 and b = 10

(e) Pot E, Origin (f) Pot E, k = 5 and b = 3 (g) Pot E, k = 10 and b = 5 (h) Pot E, k = 20 and b = 10

Figure 10. The experiment result of single pot D and E reconstruction with with various numbers of ranks (k) and branches (b). Red
fragments indicate false positive configurations.

(a) k = 5 and b = 3 (b) k = 10 and b = 5 (c) k = 20 and b = 10

Figure 11. The experiment result of mixed pot E and D reconstruction with various numbers of ranks (k) and branches (b). Red fragments
indicate false positive configurations.

(a) k = 5 and b = 3 (b) k = 10 and b = 5 (c) k = 20 and b = 10

Figure 12. Experiment result of mixed 5 different pots reconstruction with various numbers of ranks (k) and branches (b). Red fragments
indicate false positive configurations.

