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In this document, we provide details about implementa-
tion such as network architecture and losses. In addition,
we perform additional evaluation to complement the results
in the main paper.

1. Implementation Details

This section contains precise details about the imple-
mentation of LalL.alLoc and the baselines that it is compared
against in the main paper.

1.1. LaLaLoc Architecture

We implement ®;40,: as the convolutional layers from
a ResNet18 [[1] network, with the first layer replaced with
an equivalent taking a 1-channel input. @®;,,,4¢c, On the
other hand, is implemented as a ResNet50 [1] network. In
each, we remove the default classifier and replace it with
an average pooling layer and a single fully connected layer
which takes the embedding dimension to 128d, from 512d
or 2048d for ResNet18 and ResNet50, respectively. The
embedding vectors are all L2 normalised before any re-
trieval or comparison task.

1.2. Decoder Architecture

The architecture of the decoder that is used to aid train-
ing of @440y is defined as follows. First, the latent repre-
sentation is fed into a fully connected layer which expands
it to 2048d. This is reshaped to (2 x 4) with 256 chan-
nels. The up-scaling stage is formed of multiple repeated
blocks. Each block comprises of a 2x bilinear up-sample,
a 2D convolution with kernel size 3, a ReLU non-linearity,
and a BatchNorm layer. The number of out channels from
each block follows the pattern (128 — 64 — 32 — 32).
Finally, depth is predicted with a point-wise convolution
which predicts a depth image. With four 2 x up-samples the
final resolution of the decoded depth image is (32 x 64).

1.3. Training Routine

We train ®;,40.¢ for a total of 20 epochs, with a batch
size of 4. We optimise using SGD, with an initial learn-

ing rate of 0.01, and decay by a factor of 0.1 after 10
and 15 epochs. For the log-ratio loss, we follow the posi-
tive:negative sampling ratio of 1:20 as used in [2], therefore
a single minibatch contains a total of 84 layouts. We define
positives and negatives by their spatial distance from the
anchor: positives less than 0.5m from the anchor; negatives
greater than 2m from the anchor.

®;1mage is trained for a total of 200 epochs, with a batch
size of 64. Due to the dearth of RGB images, only a sin-
gle image-layout pair is sampled per iteration. We again
use a SGD optimiser with a learning rate set to 0.1. This is
then decayed by a factor of 0.1 after 100 and 150 epochs.
®ayout 1s frozen for the whole training process. Worth
noting is that, when ®;,,,4¢1s trained with a variant of
l10g ratio» the training routine follows that of ®qy 0yt -

1.4. Image Branch Losses

Here we provide the full equations for the additional im-
age losses evaluated in the ablation in the main paper. First,
we restate {104 rqtio [2], as used for the layout branch:
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where (p, i, 7) is a triplet of locations within a floor plan, at
which we infer their layouts (L, Li, L;), g = Piayout(L)
represents the respective embedding of a layout, C' is the
back-projection of layout I, D(-) is the Euclidean distance
and C'h(-) is the Chamfer distance.
For the training of ®;;,,,4c, we adapt the loss so that the
anchor of the triplet now also has an RGB panorama image

({Ip: Lp}, Li, Lj)
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where the layout embedding g,,, has now been replaced with
the embedding of the panorama captured in the same loca-
tion, fp = Pjmage(Lp). Therefore, this loss aims to ensure
®;mage captures the relative similarities between layouts.
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Figure 1. Visualisation of the Vogel Disc sampling pattern with
N=200.

We also include a further adaptation, ¢, 4, where we
remove ground-truth layout similarities between (p, i, j):

D(gzafp) _ D(g’ugp))Q
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such that ®;,,,,4 should instead learn to capture the rela-
tive similarities between layout embeddings, rather than the
layouts themselves. This loss more closely follows typical
knowledge discrimination, as the “student” is trained with-
out ground-truth labels.

Uy ka(p,i,J) = (109

1.5. Vogel Disc Re-sampling

Our Vogel Disc re-sampling method offers a retrieval-
based refinement to the estimated pose from the nearest
neighbour in the coarse sampling grid. Specifically, we
sample a circular local region centred at the nearest neigh-
bour pose. For N total samples, the ¢th location is given

by:

where ¢ is the golden ratio, r; and 6; are the radius and
angle in polar coordinates centred at the nearest neighbour
pose. The resulting local sampling is visualised in Figure[I]

1.6. Latent Pose Optimisation

For our latent pose optimisation, we render layouts us-
ing Redner [4]. We use an Adam optimiser [3]], with initial
learning rate set to 0.01. The learning rate is scaled by a
factor of 0.5 as the loss plateaus with a threshold of 0.05
and a patience of 10 iterations. Convergence is considered
reached after 20 steps with reduction in the cost less than a
threshold of 0.001, or until 150 steps have elapsed.

1.7. Iterative Closest Point Baseline

In the following, we detail the implementation of our ICP
baseline. We emulate a point cloud obtained from a laser
scan, C,,, through the back-projection of furnished depth
images, and perform matching between those and the 2D
slices to the point cloud from the known floor plan, C'y. At
each iteration, the points in C,, are assigned to their nearest
counterparts in C'y. The rigid transform, [R, t], that aligns

Inference Time (s)

Method Retr. VDR LPO Total
2D-ICP - - - 20.1
LalLaloc w/o VDR  0.05 - 2.33(0.85) 2.38

LaLaLoc 0.05 287(2.71) 1.73(0.63) 4.65
Table 1. Inference time comparison. Times are given as: Total
(Render), where “Render” refers to the amount of time spent ren-
dering layouts from the floorplan.

Cp and Cy is determined by minimising a point-to-point
cost function given this assignment:
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where f; and m; stand for points in C¢ and C,, respec-
tively, being w;; 1 if f; was matched with m; and 0 other-
wise, and || - || a distance metric (e.g. Euclidean distance).
The process of assignment and alignment is repeated until
a maximum number of 50 iterations is reached, or the up-
date in translation, ¢ is less than a threshold of 0.01mm for
3 successive iterations.

To localise in a room, we initialise the ICP alignment
at each of the sampled grid of poses and take the result as
the resulting alignment that has the lowest RSME error be-
tween point clouds. A typical concern when dealing with
this iterative process is its execution time. To handle this,
we performed a grid-average sampling method that merges
points in the same grid cell, thus preserving the shape of the
point clouds but reducing execution time. The grid cell side
was heuristically fixed to Scm.

2. Additional Experiments

In this section, we provide some additional experimental
evaluation to complement the results in the main paper.

2.1. Time Complexity

In Table [Tl we list the inference times. We omit the ren-
dering time of the sampled grid in the retrieval stage as this
time cost is shared between the methods and can be com-
puted offline. In addition, the rendering during VDR could
be optimised (currently 2.7s mean). We see that LalLal.oc
offers a significant speed advantage over ICP. Interestingly,
VDR appears to reduce the time required for LPO since it
provides a better initialisation for LPO, reducing the mean
number of iterations to convergence, 41.7 down to 31.4.

2.2. Layout Similarity Low-resolution Sampling

Here, we re-perform our evaluation of differing layout
representations and similarity metrics for localisation on a
lower resolution sampling grid. The results are listed in Ta-
ble[2] As can be seen, the lower resolution sampling only



Similarity Recall  Pose Error  Correct

Metric @1 Median (cm) Room
Pose 100% 40.1 99.7%
Edges 55.6% 48.7 59.2%
Depth 55.2% 48.3 59.5%
Rel. Depth  54.1% 48.5 61.6%
Chamfer 71.8% 42.7 74.4%

Table 2. Evaluation of layout similarity metrics on the Struc-
tured3D validation split, now sampled with a lower-resolution 1m
x 1m grid. Pose refers to picking the nearest location in the sam-
pled grid to the query.

serves to exaggerate the performance improvement seen by
using the 3D Chamfer distance similarity metric, further
emphasising the need for careful selection.
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