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Specialize and Fuse: Pyramidal Output Representation for Semantic Segmentation

A. Visualization of the intermediate results

We show the intermediate results of our approach and
illustrate how they are fused in Fig. A.
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Figure A: An example from the ADE20K validation set
showing the intermediate results. Top: The raw semantic
pyramid outputs and raw unity pyramid outputs. Middle:
From the coarsest output to the finest output, we select se-
mantic labels only from “unity-cells” but ignore the “done-
by-coarser” regions (colored in grey). Bottom: Input image,
ground truth, HRNet48-ANL prediction, and our final fused
prediction.

B. Pyramidal ground truth
Here, we detail how to generate the pyramidal ground

truth from standard per-pixel semantic labels when there are
“don’t care” annotations in the original dataset. For a cell
covering sℓ × sℓ pixels, we consider 3 cases for different
treatments.

• All pixels share a semantic class. In this case, the
ground-truth label for the unity pyramid is “unity-cell”
(i.e., positive), and the label for the semantic pyramid
is the shared class.

• More than one semantic classes appear. In this case,
the label for the unity pyramid is “mix-cell” (i.e., nega-
tive), and the label for the semantic pyramid is “don’t
care” because it is ambiguous to use one semantic label
to represent all underlying pixels of different semantic
classes and thus a finer semantic prediction should be
referred to.

• One semantic class and “don’t care” appear. Both
the unity and the semantic ground truth are defined as
“don’t care” as it is ambiguous to determine whether the
cell is “unity-cell” or “mix-cell”. During the training
re-labeling procedure, such a cell is never regarded as
true positive, and thus its children cells in the next finer
level would never be re-labeled as “done by coarser”.

C. Detailed model settings in ablation study
We reorganize the ablation experiment results presented

in the main paper into a unified view in Table A and illus-
trate their network architectures in Fig. B. We label each
experiment with an ID (A∼K) and describe the detailed ar-
chitecture setting below. We call the layers projecting latent
dimension Ds to number of classes C as final projection
layer, which is implemented as Conv1×1 → BN → ReLU
→ Conv1×1.

• A (40.42 %) directly appends the final projection layer
to X(4).

• B (42.02 %) refines X(4) with ANL’s APNB block.
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ID mIoU (%) Contextual module Output format Training procedure
A 40.42 - single (standard) -
B 42.02 ANL single (standard) -
C 42.00 ours single (standard) -
D 40.41 - pyramidal (ours) {4,8,16,32} naive
E 41.54 - pyramidal (ours) {4,8,16,32} simple fix
F 42.07 - pyramidal (ours) {4,8,16,32} our final
G 43.07 ANL pyramidal (ours) {4,8,16,32} our final
H 43.45 ANL-multi pyramidal (ours) {4,8,16,32} our final
I 44.31 ours pyramidal (ours) {4,8,16,32} our final
J 42.63 ours single (standard) {4,8,16} only for aux.
K 44.20 ours pyramidal (ours) {4,32} our final

Table A: The ablation experiment results reorganized in a unified view.
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Figure B: The network architectures of the ablation experiments listed in Table A.

• C (42.00 %) is our coarse-to-fine contextual module,
but only a single finest level semantic prediction is
outputted.

• F (42.07 %) performs average-pooling on X(4) to get
features X(1), X(2), X(3) of desired spatial scales, and
each of X(1), . . . , X(4) has its own final projection
layer.

• D (40.41 %): is a variant of F where the training ground-
truth is the raw pyramidal ground truth Y (1), . . . , Y (4)

and U (1), . . . , U (3) without the re-labeling procedure
to encourage specialization in each pyramid level.

• E (41.54 %) is a variant of F where the ground-truth
unity-cell, instead of the true positive unity-cell, is used
for “don’t care” re-labeling.

• G (43.07 %) refines X(4) of F by appending ANL’s
APNB block to X(4).

• H (43.45 %) is similar to G but appends APNB block
to each of X ′(1), X ′(2), X ′(3), X ′(4).

• I (44.31 %) is the final version of the proposed Special-
ize and Fuse.

• J (42.63 %) is similar to I, but the non-finest level
predictions Ŷ (1), . . . , Ŷ (3) are only used for auxiliary
loss (the loss weight is set to 0.4) in the training phase
and discarded in the inference phase.

• K (44.20 %) is similar to I but with less pyramid levels.



D. Architecture of our ResNet-decoder
The standard ResNet produces coarse features of output

stride 32. To obtain better results, recent state-of-the-art
methods employ the dilated version of ResNet, which gen-
erates features of output stride 8. However, we find such
a modification leads to a lower speed and more memory
footprint as shown in Table B (the 2nd row), so we adopt the
standard ResNet with a lightweight decoder instead. Specifi-
cally, we use the features from the four stages of a standard
ResNet, which respectively have output strides 4, 8, 16, 32,
and 256, 512, 1024, 2048 latent channels. To reduce the
computational cost, the numbers of latent channels are
decreased from [256, 512, 1024, 2048] to [48, 96, 192, 384]
with Conv3x3 layers. We then fuse the four features by
applying the last stage of HRNet, which produces a high-
resolution feature for the following semantic segmentation
model head. The comparison of computational efficiency
between ResNet variants is shown in Table B. Note that the
constructed ResNet-decoder runs faster and consumes less
GPU memory than ResNet101-dilated-os8. Moreover, the
overall computational efficiency of adding our specialize
and fuse head upon the ResNet-decoder is still better than
that of ResNet101-dilated-os8 (which is the optimal bound
for many recent ResNet-based state-of-the-art methods).

Method
Testing
FPS ↑

Training
Memory ↓

ResNet101 82 4.5G
ResNet101-dilated-os8 † 24 9.6G
ResNet101-decoder 32 8.4G
ResNet101-decoder + our head 26 8.9G
†Optimal bound for many recent works built upon dilated ResNet

Table B: Comparing the model efficiency measured on a
GeForce RTX 2080 Ti with image size 512 × 512. FPS is
averaged for processing 50 images. GPU memory consump-
tion in training is monitored with a batch size of 4.

E. Do different pyramid levels specialize in dif-
ferent classes?

To demonstrate our intuition that different pyramid levels
have their specializations in different classes, we show the
per-class IoUs predicted by each level of the semantic pyra-
mid for the 150 classes in the ADE20K dataset in Fig. C. For
clearer visualization, we show the IoU difference between
the prediction of a single level Ŷ (ℓ) and the final fused Ŷ
instead of the original IoU of Ŷ (ℓ), and we clip the values in
the heatmaps to the range from −15% to 1%. A few entries
in the heatmaps are larger than 0, which means that Ŷ (ℓ)

performs better than the fused Ŷ on that class; it also implies
that improving the performance of unity pyramid would pro-

vide opportunities for further enhancement. In Fig. C, the
coarser pyramid levels (e.g. ℓ = 1) generally look inferior
to the finer levels, which could be caused by the fact that
the single-level evaluation setting disadvantage the coarser
levels since the per-class IoUs for each level are evaluated
on the same per-pixel scale. However, this does not conflict
with our intention to demonstrate that each pyramid level
specializes in different classes. In addition, the finest level
performs significantly worst for some classes (e.g., sky, wa-
ter, tower) since it is not trained to predict the central parts
of these large-area classes. Some visual results presented in
Fig. A provide more cues about this.

F. Qualitative results
In Fig. D, we show some visual comparisons of results

between our approach and a baseline method—ANL with
HRNet48 backbone.
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Figure C: Semantic segmentation performance at each level {Ŷ (ℓ)}ℓ=1,...,4 on different classes. We show the IoU difference
between using prediction of a level Ŷ (ℓ) and using the fused prediction Ŷ . A brighter cell indicates that the pyramid level is
more specialized in the class.
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Figure D: Qualitative comparison. In the above examples, predictions by our approach are more consistent within an instance
and also provide finer details.


