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Figure 5: Qualitative comparison of bird’s-eye view prediction with published methods on NuScenes. The predictions of
our model are much sharper and more accurate. Contrary to previous methods, FIERY can separate closely parked cars and
correctly predict distant vehicles (near the top of the bird’s-eye view image).

A. Additional Results

A.1. Comparison with published methods

Figure 5 shows a qualitative comparison of the predic-
tions from our model with previous published methods, on
the task of present-frame bird’s-eye view semantic segmen-
tation.

A.2. Benefits of temporal fusion

When predicting the present-frame bird’s-eye view seg-
mentation, incorporating information from the past results
in better predictions as shown in Figure 6.

A.3. Probabilistic modelling

Generalised Energy Distance. Let (Ŷ , Ŷ ′) be samples
of predicted futures from our model, (Y , Y ′) be samples of

ground truth futures and d be a distance metric. The Gener-
alised Energy Distance DGED is defined as:

DGED = 2E[d(Ŷ , Y )]− E[d(Ŷ , Ŷ ′)]− E[d(Y, Y ′)] (7)

We set our distance metric d to d(x, y) = 1−VPQ(x, y).
Since we only have access to a unique ground truth future
Y, DGED simplifies to:

DGED = 2E[d(Ŷ , Y )]− E[d(Ŷ , Ŷ ′)] (8)

Baselines. We describe below the baselines we compare
our model to in Table 4.

• M-Head. The M-head model inspired by [41] outputs
M different futures. During training, the best perform-
ing head backpropagates its loss with weight (1 − ϵ)



(a) The vehicle parked on the left-hand side is correctly predicted even through the occlusion.

(b) The two vehicles parked on the left are heavily occluded by the 4x4 driving on the opposite lane, however by fusing past temporal
information, the model is able to predict their positions accurately.

Figure 6: Comparison of FIERY Static (no temporal context) and FIERY (1.0s of past context) on the task of present-frame
bird’s-eye view instance segmentation on NuScenes. FIERY can predict partially observable and occluded elements, as
highlighted by the blue ellipses.

while the other heads are weighted by ϵ
M−1 . We set

ϵ = 0.05.
• Bayesian Dropout. We insert a dropout layer after

every 3D temporal convolution in the temporal model.
We also insert a dropout layer in the first 3 layers of the
decoder, similarly to [2]. We set the dropout parameter
to p = 0.25.

• Classical VAE. We use a Centered Unit Gaussian to
constrain our probability distribution similarly to the
technique used in [3]. Different latent codes are sam-
pled from N (0, IL) during inference.

Generalised Energy Distance (↓)
Short Long

M-Head 96.6 122.3
Bayesian Dropout 92.5 116.5
Classical VAE 93.2 109.6
FIERY 90.5 105.1

Table 4: Generalised Energy Distance on NuScenes, for
2.0s future prediction and M = 10 samples, showing that
our model is able to predict the most accurate and diverse
futures.



A.4. Visualisation of the learned states

We run a Principal Component Analysis on the states
st and a Gaussian Mixture algorithm on the projected fea-
tures in order to obtain clusters. We then visualise the in-
puts and predictions of the clusters in Figures 7, 9 and 10.
We observe that examples in a given cluster correspond to
similar scenarios. Therefore, we better understand why our
model is able to learn diverse and multimodal futures from
a deterministic training dataset. Since similar scenes are
mapped to the same state st, our model will effectively ob-
serve different futures starting from the same initial state.
The present distribution will thus learn to capture the differ-
ent modes in the future.

A.5. Temporal horizon of future prediction

Figure 8 shows the performance of our model for differ-
ent temporal horizon: from 1.0s to 8.0s in the future. The
performance seems to plateau beyond 6.0s in the future. In
such a large future horizon, the prediction task becomes in-
creasingly difficult as (i) uncertainty in the future grows fur-
ther in time, and (ii) dynamic agents might not even be vis-
ible from past frames.
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Figure 8: Future prediction performance for different tem-
poral horizons. We report future Video Panoptic Quality
on NuScenes at different capture sizes around the ego-car:
30m× 30m (Short) and 100m× 100m (Long).

(a) Approaching an intersection.

Figure 7: An example of cluster obtained from the spatio-temporal states st by running a Gaussian Mixture algorithm on
the NuScenes validation set. Our model learns to map similar situations to similar states. Even though the training dataset
is deterministic, after mapping the RGB inputs to the state st, different futures can be observed from the same starting state.
This explains why our probabilistic paradigm can learn to predict diverse and plausible futures.



(a) Cruising behind a vehicle.

(b) Driving on open road.

Figure 9: More example of clusters.



(a) Stuck in traffic.

(b) Turning right at an intersection.

Figure 10: More example of clusters.



B. Model and Dataset
B.1. Model description

Our model processes t = 3 past observations each
with n = 6 cameras images at resolution (Hin,Win) =
(224× 480), i.e. 18 images. The minimum depth value we
consider is Dmin = 2.0m, which corresponds to the spa-
tial extent of the ego-car. The maximum depth value is
Dmax = 50.0m, and the size of each depth slice is set to
Dsize = 1.0m.

We use uncertainty [24] to weight the segmentation, cen-
terness, offset and flow losses. The probabilistic loss is
weighted by λprobabilistic = 100.

Our model contains a total of 8.1M parameters and trains
in a day on 4 Tesla V100 GPUs with 32GB of memory. All
our layers use batch normalisation and a ReLU activation
function.

Bird’s-eye view encoder. For every past timestep, each
image in the observation Ot = {I1t , ..., Int } is encoded:
ekt = E(Ikt ) ∈ R(C+D)×He×We . We use the EfficientNet-
B4 [45] backbone with an output stride of 8 in our imple-
mentation, so (He,We) = (Hin

8 , Win

8 ) = (28, 60). The
number of channel is C = 64 and the number of depth
slices is D = Dmax−Dmin

Dsize
= 48.

These features are then lifted and projected to bird’s-eye
view to obtain a tensor xt ∈ RC×H×W with (H,W ) =
(200, 200). Using past ego-motion and a spatial transformer
module, we transform the bird’s-eye view features to the
present’s reference frame.

Temporal model. The 3D convolutional temporal model
is composed of Temporal Blocks. Let Cin be the number of
input channels and Cout the number of output channels. A
single Temporal block is composed of:

• a 3D convolution, with kernel size (kt, ks, ks) =
(2, 3, 3). kt is the temporal kernel size, and ks the spa-
tial kernel size.

• a 3D convolution with kernel size (1, 3, 3).
• a 3D global average pooling layer with kernel size
(2, H,W ).

Each of these operations are preceded by a feature com-
pression layer, which is a (1, 1, 1) 3D convolution with out-
put channels Cin

2 .
All the resulting features are concatenated and fed

through a (1, 1, 1) 3D convolution with output channel
Cout. The temporal block module also has a skip connec-
tion. The final feature st is in R64×200×200.

Present and future distributions. The architecture of the
present and future distributions are identical, except for the

number of input channels. The present distribution takes
as input st, and the future distribution takes as input the
concatenation of (st, yt+1, ..., yt+H). Let Cp = 64 be
the number of input channel of the present distribution and
Cf = 64 + Cy · H = 88 the number of input channels of
the future distribution (since Cy = 6 and H = 4). The
module contains four residual block layers [18] each with
spatial downsampling 2. These four layers divide the num-
ber of input channels by 2. A spatial average pooling layer
then decimates the spatial dimension, and a final (1,1) 2D
convolution regress the mean and log standard deviation of
the distribution in RL × RL with L = 32.

Future prediction. The future prediction module is made
of the following structure repeated three times: a convo-
lutional Gated Recurrent Unit [4] followed by 3 residual
blocks with kernel size (3, 3).

Future instance segmentation and motion decoder.
The decoder has a shared backbone and multiple output
heads to predict centerness, offset, segmentation and flow.
The shared backbone contains:

• a 2D convolution with output channel 64 and stride 2.
• the following block repeated three times: four 2D

residual convolutions with kernel size (3, 3). The re-
spective output channels are [64, 128, 256] and strides
[1, 2, 2].

• three upsampling layers of factor 2, with skip connec-
tions and output channel 64.

Each head is then the succession two 2D convolutions
outputting the required number of channels.

B.2. Labels generation

We compute instance center labels as a 2D Gaussian cen-
tered at each instance center of mass with standard deviation
σx = σy = 3. The centerness label indicates the likelihood
of a pixel to be the center of an instance and is a R1×H×W

tensor. For all pixels belonging to a given instance, we cal-
culate the offset labels as the vector pointing to the instance
center of mass (a R2×H×W tensor). Finally, we obtain fu-
ture flow labels (a R2×H×W tensor) by comparing the posi-
tion of the instance centers of gravity between two consec-
utive timesteps.

We use the vehicles category to obtain 3D bounding
boxes of road agents, and filter the vehicles that are not vis-
ible from the cameras.

We report results on the official NuScenes validation
split. Since the Lyft dataset does not provide a validation
set, we create one by selecting random scenes from the
dataset so that it contains roughly the same number of sam-
ples (6,174) as NuScenes (6,019).


