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1. Overview

In this supplementary document, we present additional
results to complement the paper. Firstly, we provide the
detailed configurations and parameters of our proposed ar-
chitectures (PyNASd and PyNASs) found by our PyNAS
(pyramid neural architecture search network). Secondly,
more qualitative comparisons with the state-of-the-art algo-
rithms are added in the supplementary.

2. Comparison with real-world results:

As suggested, we compare our approach against two
recent deblurring algorithms (CVPR19 [45] and CVPR20
[48]) on the real-world RWBI dataset [48] which captured
by various hand-held devices. The dataset consists of 3112
blurry images and no ground truths are provided. We re-
port the quantitative results in Table 1 by the no-reference
metric of PIQE on the RWBI dataset. An example is
shown in Fig.1. These results demonstrate that the proposed
NAS-based method can generalize on real-world conditions
and restore higher-realistic deblurred results than the other
SOTA methods.

Table 1. Quantitative results with different methods. ↓ means that
the lower the better. All models are trained on the GoPro and then
generalized on the real-world RWBI dataset.

Criteria CVPR2019 [45] CVPR2020 [48] Ours

PIQE ↓ 32.22 30.36 12.41

Real-world Blurry Image Inputs  DMPHN[45] Ours

Figure 1. Qualitative comparison on real-world blurry images (RWBI).
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3. Discussion

Searching strategy on top structure: We adopt a weighted
random sampling method (a discrete empirical probability
model) via assigning the higher probability to the better
scale depth (i.e., scale=3,4). We tried to embed the scale
depth into gradient back-propagation but the searching was
not stable and also affected the performance of the bot-
tom variable searching. We will clarify this in our revised
manuscript.
Structure and performance difference with DMPHN:
Compared with DMPHN, our PyNAS is an automatic and
flexible framework by introducing a large search space in-
cluding top and bottom variables. In DMPHN, each scale
inherits the same structure without considering different re-
quirements of the receptive field at each scale. But PyNAS
studies the discrepancy of receptive field at each scale, and
then stack different structures for further joint optimization
via cutting off unnecessary links or optimizing basic struc-
tures. Thus, even for the same patch scheme (PyNASs), our
method decreases 1/3 parameter size (10Mb) of DMPHN.
In addition, our network architecture obtained by PyNAS
only occupies 1/2 inference time of DMPHN.
Theoretical analysis and concrete proofs on NAS: We
outline the evidence in a high level why NAS discovered
architectures are surpassing human-designed ones. i). The
human-designed encoder-decoder structure like DMPHN
assumes that each scale uses the same structure without
considering the discrepancy of the receptive field at each
scale. ii). The scale depth, patch scheme, and basic struc-
ture are not well-optimized but only empirically designed in
a manual way. Specifically, some links from blur features
obtained by shallow layers, which probably deteriorate the
deblurring reconstruction, can be removed by our NAS. iii).
As seen in Table 3 of paper, our multi-scale search strategy
(PyNAS) is much better than the random policy which is
usually adopted in a human-designed process.
More Analyses with similar structures: Different from
similar structures [5, 21, 35], our PyNAS adopts the multi-
patch mechanism to better represent blur kernel knowledge.



Compared with the information loss of blur kernel due to
the image degradation of the multi-scale framework, we uti-
lize the multi-patch scheme to exploit blur kernel priors and
better represent global non-uniform knowledge. Further-
more, in contrast to [33, 43, 45], our PyNAS can automat-
ically design different structures based on the different re-
quirements of the receptive field at each scale.
More comparisons with recent work in Table 2: To make
our results more convincing, we compare our PyNAS with
Five most recent deblurring methods in Table 2. For [A1],
to ensure a fair comparison, we choose the best models un-
der the constraint of real-time inference. From Table 2, Our
PyNAS architecture still performs much better than the pre-
vious most recent manual architecture.

Table 2. The most recent quantitative results on the VideoDeblur-
ring dataset. The models are trained on the GoPro dataset and then
generalized on the VideoDeblurring dataset [31].

Models PSNR Models PSNR

Kupyn (ICCV2019) [15] 28.53 Zhang (CVPR2019) [45] 30.25
Zhang (CVPR2020) [48] 30.11 Ours (PyNASd) 31.01

4. Network Architectures
Two network architectures are found by our PyNAS al-

gorthim: one is the lightweight (PyNASs) which searches
the identical cells for each scale and can share the weight
among scales. The other is the (PyNASd) which searches
individual cell structure of each scale and then stack them
together. The learned PyNASs is a pyramid shape (1-2-
4-8) network and mainly consists of dilation blocks and
standard convolution blocks, while the PyNASd is a 1-
3-9 patch scheme network and contains massive dilation
blocks and convolution blocks with large kernel size. De-
tailed configurations (e.g., kernel size and operators) of
PyNASd and PyNASs can be found in Figure 1 and Figure
2. The selected standard operators are mainly consisted of
3×3 convolution block (3×3 Con), 5×5 convolution block
(5×5 Con) and 3×3 dilation block (3×3 Dilation).

5. Visualization Quality of Real-time Image
Deblurring

We show the visualization of different models for images
containing large motion blur and zoom in the main object.
Compared with recent deep learning based methods, the re-
habilitated images of our method are clearer and sharper at
the edges. The content of our deblurred images are well
recovered, e.g., the numbers of advertisement and license
plate are deblurred perfectly, while others fail to show clear
numbers.

References

2



3
x
3
_
D
il
a
ti
o
n

5
x
5
_
C
o
n
v

5
x
5
_
C
o
n
v

3
x
3
_
D
il
a
ti
o
n

5
x
5
_
C
o
n
v

5
x
5
_
C
o
n
v

3
x
3
_
C
o
n
v

5
x
5
_
C
o
n
v

5
x
5
_
C
o
n
v

5
x
5
_
C
o
n
v

3
x
3
_
C
o
n
v

3
x
3
_
C
o
n
v

3
x
3
_
D
il
a
ti
o
n

5
x
5
_
C
o
n
v

5
x
5
_
C
o
n
v

3
x
3
_
D
il
a
ti
o
n

5
x
5
_
C
o
n
v

5
x
5
_
C
o
n
v

3
x
3
_
C
o
n
v

5
x
5
_
C
o
n
v

5
x
5
_
C
o
n
v

5
x
5
_
C
o
n
v

3
x
3
_
C
o
n
v

3
x
3
_
C
o
n
v

3
x
3
_
D
il
a
ti
o
n

3
x
3
_
C
o
n
v

3
x
3
_
C
o
n
v

3
x
3
_
C
o
n
v

3
x
3
_
D
il
a
ti
o
n

3
x
3
_
D
il
a
ti
o
n

3
x
3
_
D
il
a
ti
o
n

3
x
3
_
D
il
a
ti
o
n

3
x
3
_
D
il
a
ti
o
n

3
x
3
_
D
il
a
ti
o
n

3
x
3
_
D
il
a
ti
o
n

3
x
3
_
D
il
a
ti
o
n

Pyramid Scale  (1-3-9)

Figure 2. PyNASd: Our proposed pyramid architecture search (PyNAS) using the pyramid patch scheme (1-3-9) and scale depth (3). The
non-overlap multi-patch hierarchy is used as the input of the network. PyNAS searches the whole encoder and decoder structure of each
scale of the network from the operator candidates and the path binarization is exploited to search for the best operator. It is noteworthy that
our PyNAS finds a better pyramid network architecture (1-3-9) using less inference time and shallower scale depth.
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Pyramid Scale (1-2-4-8)

Figure 3. PyNASs: Our proposed pyramid architecture search (PyNAS) using the pyramid patch scheme (1-2-4-8) and scale depth (4). The
non-overlap multi-patch hierarchy is used as the input of the network. PyNAS searches the whole encoder and decoder structure of each
scale of the network from the operator candidates and the path binarization is exploited to search for the best operator.
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(a) Input (b) Sun et al. [4] (c) Pan et al. [3] (d) Nah et al. [2]

(e) Gong et al. [1] (f) J. Zhang et al. [6] (g) H. Zhang et al. [5] (h) Ours (PyNASd)

(a) Input (b) Sun et al. [4] (c) Pan et al. [3] (d) Nah et al. [2]

(e) Gong et al. [1] (f) J. Zhang et al. [6] (g) H. Zhang et al. [5] (h) Ours (PyNASd)

Figure 4. Visual comparison with state-of-the-art Image Deblurring methods on GOPR0868-11-00.
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(a) Input (b) Sun et al. [4] (c) Pan et al. [3] (d) Nah et al. [2]

(e) Gong et al. [1] (f) J. Zhang et al. [6] (g) H. Zhang et al. [5] (h) Ours (PyNASd)

(a) Input (b) Sun et al. [4] (c) Pan et al. [3] (d) Nah et al. [2]

(e) Gong et al. [1] (f) J. Zhang et al. [6] (g) H. Zhang et al. [5] (h) Ours (PyNASd)

Figure 5. Visual comparison with state-of-the-art Image Deblurring methods on GOPR0869-11-00.
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(a) Input (b) Sun et al. [4] (c) Pan et al. [3] (d) Nah et al. [2]

(e) Gong et al. [1] (f) J. Zhang et al. [6] (g) H. Zhang et al. [5] (h) Ours (PyNASd)

(a) Input (b) Sun et al. [4] (c) Pan et al. [3] (d) Nah et al. [2]

(e) Gong et al. [1] (f) J. Zhang et al. [6] (g) H. Zhang et al. [5] (h) Ours (PyNASd)

Figure 6. Visual comparison with state-of-the-art Image Deblurring methods on GOPR0871-11-00.
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(a) Input (b) Sun et al. [4] (c) Pan et al. [3] (d) Nah et al. [2]

(e) Gong et al. [1] (f) J. Zhang et al. [6] (g) H. Zhang et al. [5] (h) Ours (PyNASd)

(a) Input (b) Sun et al. [4] (c) Pan et al. [3] (d) Nah et al. [2]

(e) Gong et al. [1] (f) J. Zhang et al. [6] (g) H. Zhang et al. [5] (h) Ours (PyNASd)

Figure 7. Visual comparison with state-of-the-art Image Deblurring methods on GOPR0881-11-01.
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