
Appendix

A. Proofs
A.1. Proof of Lemma 1

Proof. We know
∑k

j=1 f[j] is the solution of

max
p

p⊤F, s.t. p⊤1 = k,0 ≤ p ≤ 1.

We apply Lagrangian to this equation and get

L = −p⊤F − v⊤p+ u⊤(p− 1) + λ(p⊤1− k)

where u ≥ 0, v ≥ 0 and λ ∈ R are Lagrangian multipliers.
Taking its derivative w.r.t. p and set it to 0, we have v =
u − F + λ1. Substituting it back into the Lagrangian, we
get

min
u,λ

u⊤1+ kλ, s.t. u ≥ 0,u+ λ1− F ≥ 0.

This means
k∑

j=1

f[j] = min
λ

{
kλ+

m∑
j=1

[fj − λ]+

}
.

Therefore,

ϕk(F ) =
1

k
min
λ

{
kλ+

m∑
j=1

[fj − λ]+

}
. (16)

Furthermore, we can see that λ = f[k] is always one optimal
solution for Eq.(16). So

f[k] ∈ argmin
λ

{
kλ+

m∑
j=1

[fj − λ]+

}
.

A.2. Proof of Lemma 2

Proof. Denote g(x) = [[a − x]+ − λ]+. For λ ≥ 0, we
have g(x) = 0 = [a − x − λ]+ if x ≥ a. On the other
hand, if x < a, we have g(x) = [a − x − λ]+. Therefore,
g(x) = [[a−x]+ −λ]+ = [a−x−λ]+ for any λ ≥ 0.

B. Additional Experimental Details
B.1. Source Code

For the purpose of review, the source code is accessible
in the supplementary file.

B.2. Computing Infrastructure Description

All algorithms are implemented in Python 3.6 and
trained and tested on an Intel(R) Xeon(R) CPU W5590
@3.33GHz with 48GB of RAM and an NVIDIA Quadro
RTX 6000 GPU with 24GB memory.

B.3. The Algorithm for The Universal Untargeted
Attack

First, we define the universal attack success rate (UASR)
as

UASR =
1

n

n∑
i=1

I[E(Y (xi),Ŷ (xi+z))=0]. (17)

We apply Algorithm 1 (without using projection in it) itera-
tively over all samples from X. At each iteration, Algorithm
1 finds a perturbation ∆zi for a given data point xi + z,
which success attack all top-k labels for the current data xi.
Then we update the universal adversarial perturbation z by
using a projection operation to it. The overall procedure is
described in detail in Algorithm 3. The algorithm termi-
nates when the predefined attack success rate ξ is reached.

Algorithm 3: TkML-AP-Uv
Input: X = {x1, · · · ,xn}, predictor F , k, ηl, ξ, β
Output: perturbation z∗

1 Initialization: z
2 while UASR < ξ do
3 for xi ∈ X do
4 if E(Y (xi), Ŷ (xi + z)) ̸= 0 then
5 ,∆zi =TkML-AP-

U(xi + z, F, k, ηl, β) ▷ Algorithm
1

6 z = Pϵ(z+∆zi)

7 end
8 end
9 end

10 z∗ = z
11 return z∗

B.4. Baseline Model Settings

Specifically, we tune the model with Adam optimizer
with an initial learning rate of 0.001 and batch size of 64
on PASCAL VOC 2012 and MS COCO 2014 for 25 and
100 epochs respectively.

For the PASCAL VOC 2012 dataset, following the pro-
tocol of [22, 27] for a fair comparison, which trained on
the training set (5,717 images) and tests on the validation
set (5,823 images). The MS COCO 2014 dataset is a larger
dataset comparing with the PASCAL VOC 2012 in terms of
both numbers of classes and images. It does not provide the
ground truth labels for the testing images either. Similarly,
we do the training on the training set (82,081 images) and
testing on the validation set (40,137 images). The images
are normalized into the range of [−1, 1].



k Methods
PASCAL VOC 2012 MS COCO 2014

k′=3 k′=5 k′=10 k′=3 k′=5 k′=10
Pert(×10−2) ASR Pert(×10−2) ASR Pert(×10−2) ASR Pert(×10−2) ASR Pert(×10−2) ASR Pert(×10−2) ASR

3 kFool 1.64 93.7 0.95 15.7 0.91 3.2 5.48 61.4 0.99 5.5 0.65 0.4
TkML-AP-U 0.51 99.6 0.24 3.6 0.18 0.3 0.24 100 0.43 26.5 0.35 3.9

5 kFool - - 2.39 93.5 1.59 20.4 - - 9.92 65.2 1.10 6.8
TkML-AP-U - - 0.56 99.3 0.18 1 - - 0.53 100 0.39 9.8

10 kFool - - - - 4.87 88.7 - - - - 1.66 68.1
TkML-AP-U - - - - 0.63 98.3 - - - - 0.59 100

Table 6: Comparison of Pert and ASR (%) of the untargeted attack methods with k = 3, 5, 10 on two datasets. The best results are
shown in bold. ‘-’ represents the current results in the k′ < k setting are the same as the results in the k′ = k setting.

Methods k
MS COCO 2014

Pert(×10−2) ASR

kFool

10 16.45 68.1
15 23.49 66.7
20 26.01 65.7
25 57.38 63
30 97.67 62.7
40 103.53 51.2

Table 7: Pert and ASR (%) of kFool method in different k set-
tings on MS COCO 2014 dataset.

B.5. Settings of Attacking Methods

We use the same learning rate 0.01 for TkML-AP-U,
TkML-AP-T, and ML-AP methods. We set 1000 as the
maximum iterations in all untargeted and targeted attack
methods. we only test the ℓ2 norm for the perturbations.
However, our algorithms can also work on other ℓp norms,
i.e., ℓ1 and ℓ∞. Since the optimization may get stuck in ex-
treme spots, we follow similar image processing and vari-
able transformation methods in the algorithms based on [3]
to avoid this problem.

Instead of taking a long time to find a good trade-off
hyper-parameter β in all algorithms, we use a projection
method [14, 9] on z. After each iteration, we apply pro-
jection on the z with a projector operation Pϵ controls the
criteria ∥z∥2 ≤ ϵ, where ϵ is a predefined robustness thresh-
old.

In the untargeted attack experiments, we set the projec-
tion threshold ϵ = 10 in our algorithm. Since our algorithm
and the kFool method have no terminate conditions, they
will success attack all images in the test set of data. This
means both of them can achieve a 100% ASR score in the
final performance even take a long time in some specific im-
ages. To avoid this situation, we set the maximum iteration
equals 1000 as we mentioned before. After both algorithms
finish attack 1000 images in each dataset, we report the final
performance.

We set ϵ = 2 in the targeted attack experiment and report
the final performance in the main paper. However, we also
test other ϵ settings in the following Section.

C. Additional Experimental Results
C.1. Additional Untargeted Attacking Performance

First, we report the complete results with the same set-
ting from Table 2 in Table 6. Second, we analysis some re-
sults displayed in Table 2. For the kFool method, we can see

Figure 5: Examples of kFool and TkML-AP-U adversarial per-
turbations with k = 3, 5, 10 on PASCAL VOC 2012. To better
show perturbations, we have multiplied the intensity of all pertur-
bation images by 20. GT means the ground truth labels. Top-k
(k=3, 5, 10) means the Top-k predicted labels from the corre-
sponding image. Advers. means adversarial. The green icons
correspond to the ground truth labels.

that ASR scores from 93.7% to 88.7%, which are decreas-
ing with increasing the k value in the PASCAL VOC 2012
dataset. This is because the top-k attack becomes hard when
the k is increasing. The algorithm needs to take more effort
to push ground truth labels outside the top-k position. How-
ever, we find an opposite trend that ASR score is increasing
when the k value is increasing in the COCO dataset. The
reason is that the number of labels in the COCO dataset is
four times that in VOC. In other words, the number of non-
ground truth labels is very large in the COCO dataset. When
the k value is small, the performance of the kFool method is
not influenced much by the k settings. However, when the k
value is large and continues increasing, the ASR score will
be decreased because the k value has more impact on the al-



Figure 6: Examples of kFool and TkML-AP-U adversarial per-
turbations with k = 3, 5, 10 on PASCAL VOC 2012. To better
show perturbations, we have multiplied the intensity of all pertur-
bation images by 20. GT means the ground truth labels. Top-k
(k=3, 5, 10) means the Top-k predicted labels from the corre-
sponding image. Advers. means adversarial. The green icons
correspond to the ground truth labels.

gorithm. We have verified this statement through additional
experiments in Table 7.

C.2. Additional Untargeted Attacking Image Re-
sults

We show a failed example from the kFool method in Fig-
ure 5. Since the original kFool method is for attacking the
top-k multi-class classifier, we show the results, which an
image has only one ground-truth label in Figure 6. From
Figure 6, we can see that our method outperforms the kFool
method even our method is reduced to a multi-class version.

C.3. Additional Universal Untargeted Attacking
Performance

We also compare the performance of our TkML-AP-Uv
method and the kUAPs method. In the training of both al-
gorithms, when UASR larger than 0.7, we output the uni-
versal perturbation ∥z∥ and use it to evaluate the attacking
methods and report the performance in Table 8. Note that
the performance in Table 4 is a partial results of the perfor-
mance in Table 8. To evaluate the performance efficiently
and avoid the algorithm still get stuck in the loop, we set 20

ξ k Methods PASCAL VOC 2012 MS COCO 2014
k′=1 k′=2 k′=3 Pert k′=1 k′=2 k′=3 Pert

0.7
1 kUAPs × × × × 63.9 51.4 45 0.51

TkML-AP-Uv 72.3 60 50.2 0.15 86.5 68.5 62.9 0.13
2 kUAPs - × × × - 74.6 65.9 0.51

TkML-AP-Uv - 68 59.5 0.16 - 82 82 0.15
3 kUAPs - - × × - - 73.2 0.51

TkML-AP-Uv - - 65 0.17 - - 80.5 0.16

0.8
1 kUAPs × × × × 66.2 56.2 49.4 0.51

TkML-AP-Uv 74.2 60.7 50.4 0.14 84.5 70.4 63.7 0.13
2 kUAPs - × × × - × × ×

TkML-AP-Uv - 70.5 61.7 0.16 - 81.2 75.3 0.15
3 kUAPs - - × × - - 73.2 0.51

TkML-AP-Uv - - 69 0.18 - - 78.9 0.16

Table 8: Comparison of Pert and ASR (%) of the universal un-
targeted attack methods for two datasets. ‘×’ represents the cur-
rent algorithm cannot get results. ‘-’ represents the current results
in the k′ < k setting are the same as the results in the k′ = k
setting. ϵ = 100. The best results are shown in bold.

ξ k Methods PASCAL VOC 2012 MS COCO 2014
k′=1 k′=2 k′=3 Pert k′=1 k′=2 k′=3 Pert

0.7
1 kUAPs × × × × 97.6 91.5 85.4 1.24

TkML-AP-Uv 72.3 60 50.2 0.14 86.5 68.5 62.9 0.13
2 kUAPs - 78.5 70.6 0.85 - 99.4 98.8 10.16

TkML-AP-Uv - 68 59.5 0.16 - 82 82 0.15
3 kUAPs - - 79.5 2.09 - - 73.2 10.16

TkML-AP-Uv - - 65 0.17 - - 80.5 0.16

0.8
1 kUAPs 82.9 70.6 60.7 0.66 96.7 78.6 59.4 2.60

TkML-AP-Uv 74.2 60.7 50.4 0.14 84.5 70.4 63.7 0.13
2 kUAPs - 84.2 77 0.98 - 99.3 98.1 1.62

TkML-AP-Uv - 70.5 61.7 0.16 - 81.2 75.3 0.15
3 kUAPs - - × × - - 98.6 3.95

TkML-AP-Uv - - 69 0.18 - - 78.9 0.16

Table 9: Comparison of Pert and ASR (%) of the universal un-
targeted attack methods for two datasets. ‘×’ represents the cur-
rent algorithm cannot get results. ‘-’ represents the current results
in the k′ < k setting are the same as the results in the k′ = k
setting. ϵ = 2000. The best results are shown in bold.

as the maximum iteration for the outer loop in both algo-
rithms. We use ‘×’ to represent the algorithm that cannot
satisfy the terminate conditions after the maximum itera-
tion. We also report the results when ξ = 0.8.

In MS COCO 2014 dataset, the ASR scores from our
method are higher than the scores from the kUAPs. There
is a huge gap (12.6%) between two methods when k = 1
and ξ = 0.7. Second, we can find that the Pert from our
method is smaller than it from the kUAPs method in all k
value settings. On the other hand, we find the ASR scores
from our method are decreasing when increasing the k
value. However, there is no same trend in the kUAPs. The
maximum score (74.6%) can be achieved when k = 2. A
potential explanation is that the kUAPs is based on the mod-
ified kFool comparative method, which has no guarantee of
the optimal solution in the optimization procedures. But
our method is based on TkML-AP-U, which uses the sum
of top-k (a convex relaxation) in the optimization.

When we compare the results between two datasets in
our method, we can find that the ASR scores from the MS
COCO 2014 dataset are larger than ones from the PASCAL
VOC 2012 dataset. The reason is that MS COCO 2014 has
80 labels. There are many labels (exclude the ground truth
labels) that can be pushed to the top-k positions. However,
there are only 20 labels in the PASCAL VOC 2012 dataset.
Therefore, the attacking methods are easy to attack the base-
line models with a dataset that contains more labels.



Cases k Methods
PASCAL VOC 2012 MS COCO 2014

k′=3 k′=5 k′=10 k′=3 k′=5 k′=10
Pert(×10−3) ASR Pert(×10−3) ASR Pert(×10−3) ASR Pert(×10−3) ASR Pert(×10−3) ASR Pert(×10−3) ASR

Best
3 ML-AP 3.04 64.7 2.63 3.6 1.14 0.1 4.96 97.5 4.65 11.2 4.35 1.1

TkML-AP-T 3.04 64.7 2.70 2.80 1.14 0.1 5.10 97.5 4.51 9.1 4.73 0.7
5 ML-AP - - 3.20 51.5 2.02 0.5 - - 5.55 94 4.70 3

TkML-AP-T - - 3.20 51.8 1.96 0.7 - - 5.68 94.5 5.14 2.5
10 ML-AP - - - - 3.33 34.4 - - - - 6.10 86.5

TkML-AP-T - - - - 3.37 35.5 - - - - 6.22 87.8

Random
3 ML-AP 3.58 34.3 3.44 12.9 3.31 1.6 6.58 84.5 6.50 45.2 6.27 14

TkML-AP-T 3.60 38.2 3.46 12.8 3.49 1.1 6.63 86.3 6.55 42.6 6.52 11.5
5 ML-AP - - 3.67 23.7 3.82 4.7 - - 6.72 60.1 6.61 22.9

TkML-AP-T - - 3.76 28.2 3.54 3.7 - - 6.81 68.1 6.65 21.1
10 ML-AP - - - - 3.75 17.6 - - - - 6.95 26.4

TkML-AP-T - - - - 3.80 20.5 - - - - 6.97 42.6

Worst
3 ML-AP 3.88 13.7 3.85 9 3.82 2.2 6.71 61.2 6.68 42.4 6.78 18.5

TkML-AP-T 3.85 17.5 3.79 10.2 3.74 2.6 6.76 65.5 6.74 42 6.75 17.4
5 ML-AP - - 3.96 8.3 4.03 3.4 - - 6.75 39.9 6.70 23.9

TkML-AP-T - - 3.98 11.3 4.01 3.3 - - 6.80 47.2 6.76 23.2
10 ML-AP - - - - 3.95 6.2 - - - - 6.90 14.7

TkML-AP-T - - - - 4.04 10.2 - - - - 6.88 24.4

Table 10: Comparison of Pert and ASR (%) of the targeted attack methods with k=3, 5, 10 in the Best, Random, and Worst cases on two
datasets. The best ASR results are shown in bold. ϵ = 1.

Figure 7: Examples of kUAPs and TkML-AP-Uv adversarial per-
turbations with k = 3 on MS COCO 2014. GT means the ground
truth labels. Top-3 means the Top-3 predicted labels from the cor-
responding image. The green icons correspond to the ground truth
labels.

Since we set 100 as a projection threshold in the algo-
rithm, the norm of z from the kUAPs method in all k value
settings can reach the maximum threshold, which means
the perturbed images from kUAPs will distortion. When
we increase the projection threshold, these values from the
kUAPs will become larger. But the values from the TkML-
AP-Uv method are stable. We show the results in Table 9
with setting the projection threshold ϵ = 2000 .

C.4. Additional Universal Untargeted Attacking
Image results

We set ϵ = 100 and ξ = 0.7, then show the image re-
sults from both methods in Figure 7. However, we can set
a smaller ϵ value and get a smaller perturbation. Here, we
show more perturbed image results and report their top-3
predictions based on our TkML-AP-Uv method with set-
ting different ϵ. We set the projection threshold ϵ = 15 in

Figure 8: Examples of TkML-AP-Uv adversarial perturbations
with k = 3 on MS COCO 2014. GT means the ground truth labels.
Top-3 means the Top-3 predicted labels from the corresponding
image. Advers. means adversarial. The green icons correspond to
the ground truth labels. ϵ = 15.

Figure 9: Examples of TkML-AP-Uv adversarial perturbations
with k = 3 on MS COCO 2014. GT means the ground truth labels.
Top-3 means the Top-3 predicted labels from the corresponding
image. Advers. means adversarial. The green icons correspond to
the ground truth labels. ϵ = 20.

Figure 8 and ϵ = 20 in Figure 9.



Cases k Methods
PASCAL VOC 2012 MS COCO 2014

k′=3 k′=5 k′=10 k′=3 k′=5 k′=10
Pert(×10−3) ASR Pert(×10−3) ASR Pert(×10−3) ASR Pert(×10−3) ASR Pert(×10−3) ASR Pert(×10−3) ASR

Best
3 ML-AP 4.44 96.2 3.70 15 2.42 0.2 5.49 100 5.13 11.4 5.09 1.3

TkML-AP-T 4.45 96.6 3.57 4.10 1.14 0.1 5.71 100 5.55 11.4 5.68 0.9
5 ML-AP - - 5.01 92 2.59 0.6 - - 6.57 99.9 5.94 3.9

TkML-AP-T - - 5.02 92.8 1.18 0.1 - - 6.86 99.9 5.69 2.9
10 ML-AP - - - - 5.53 84.2 - - - - 8.06 99.8

TkML-AP-T - - - - 5.59 86.4 - - - - 8.52 99.8

Random
3 ML-AP 5.90 86 5.69 51.7 4.88 3.1 9.43 99.8 9.35 60.7 9.17 24.9

TkML-AP-T 5.90 89.8 5.39 25.3 4.57 2.4 9.89 99.9 9.79 58.4 9.72 22.7
5 ML-AP - - 6.22 77.9 5.78 16.3 - - 11.10 96.5 11.00 43.2

TkML-AP-T - - 6.27 83.7 5.66 10.5 - - 11.80 97.8 11.70 42.7
10 ML-AP - - - - 6.27 67.7 - - - - 12.20 84.2

TkML-AP-T - - - - 6.41 76.4 - - - - 12.80 94.5

Worst
3 ML-AP 6.59 68 6.43 42.6 5.86 7.7 10.80 90 10.90 72.2 11.10 43.3

TkML-AP-T 6.64 75.8 6.35 36.2 5.79 7.3 11.40 91.4 11.50 71.6 11.70 43
5 ML-AP - - 6.75 53.3 6.47 18.8 - - 11.90 81.8 11.90 56.6

TkML-AP-T - - 6.90 66.6 6.41 16.6 - - 12.50 87.2 12.60 58.9
10 ML-AP - - - - 6.68 39.1 - - - - 12.50 59

TkML-AP-T - - - - 6.91 57 - - - - 13.00 73.1

Table 11: Comparison of Pert and ASR (%) of the targeted attack methods with k=3, 5, 10 in the Best, Random, and Worst cases on two
datasets. The best ASR results are shown in bold. ϵ = 2.

Cases k Methods
PASCAL VOC 2012 MS COCO 2014

k′=3 k′=5 k′=10 k′=3 k′=5 k′=10
Pert(×10−3) ASR Pert(×10−3) ASR Pert(×10−3) ASR Pert(×10−3) ASR Pert(×10−3) ASR Pert(×10−3) ASR

Best
3 ML-AP 4.74 98.9 4.12 5.6 1.14 0.1 5.51 100 5.31 12.2 4.57 1

TkML-AP-T 4.76 99.2 3.91 4.20 1.14 0.1 5.72 100 5.48 11.1 4.91 0.7
5 ML-AP - - 5.53 97.2 5.29 1.1 - - 6.60 99.9 5.57 3.3

TkML-AP-T - - 5.54 97.8 4.71 1.1 - - 6.91 99.9 6.75 3.9
10 ML-AP - - - - 6.35 94 - - - - 8.18 100

TkML-AP-T - - - - 6.43 95.7 - - - - 8.69 100

Random
3 ML-AP 6.77 95.5 6.39 40.2 5.39 2.8 9.62 100 9.47 64.6 9.36 25

TkML-AP-T 6.72 97.7 6.06 29 5.03 1.9 10.10 100 10.00 61.6 9.94 23.4
5 ML-AP - - 7.32 90.7 6.71 17.2 - - 11.90 98.5 11.50 45

TkML-AP-T - - 7.34 94.8 6.30 12 - - 13.00 99.3 12.90 44.4
10 ML-AP - - - - 7.55 85 - - - - 14.40 95

TkML-AP-T - - - - 7.74 91.8 - - - - 16.50 99.1

Worst
3 ML-AP 7.92 86.1 7.75 54.8 7.09 10.9 11.90 96.6 12.10 77.3 12.60 49.3

TkML-AP-T 8.04 92.9 7.67 48.5 6.83 9.3 12.70 98 13.00 77.7 13.50 50.7
5 ML-AP - - 8.30 75.7 7.67 27.8 - - 13.50 92.8 13.80 67.8

TkML-AP-T - - 8.58 89.2 7.74 21.5 - - 15.00 95.8 15.30 68.3
10 ML-AP - - - - 8.37 64.3 - - - - 15.50 75.6

TkML-AP-T - - - - 8.84 83.6 - - - - 17.90 90

Table 12: Comparison of Pert and ASR (%) of the targeted attack methods with k=3, 5, 10 in the Best, Random, and Worst cases on two
datasets. The best ASR results are shown in bold. ϵ = 3.

Cases k Methods
PASCAL VOC 2012 MS COCO 2014

k′=3 k′=5 k′=10 k′=3 k′=5 k′=10
Pert(×10−3) ASR Pert(×10−3) ASR Pert(×10−3) ASR Pert(×10−3) ASR Pert(×10−3) ASR Pert(×10−3) ASR

Best
3 ML-AP 4.83 99.6 3.62 4.7 1.14 0.1 5.50 100 5.42 12.3 4.57 1.2

TkML-AP-T 4.86 99.8 3.64 4.3 1.14 0.1 5.74 100 5.66 11.4 6.84 1.1
5 ML-AP - - 5.68 98.4 3.65 1 - - 6.60 99.9 5.98 3.8

TkML-AP-T - - 5.73 99.1 2.92 0.9 - - 6.91 99.9 5.96 3.3
10 ML-AP - - - - 6.62 96.7 - - - - 8.19 100

TkML-AP-T - - - - 6.75 98.2 - - - - 8.70 100

Random
3 ML-AP 7.00 97.4 6.66 40.6 5.48 4 9.61 100 9.51 63.2 9.22 24.6

TkML-AP-T 6.96 99 6.31 29.5 5.04 3.1 10.10 100 9.98 61.7 9.91 23.4
5 ML-AP - - 7.61 93.6 6.64 16.3 - - 12.00 99 11.70 44.7

TkML-AP-T - - 7.84 98.6 6.33 12.3 - - 13.10 99.7 13.10 44.6
10 ML-AP - - - - 7.93 89.1 - - - - 14.70 96.8

TkML-AP-T - - - - 8.33 96.4 - - - - 17.20 99.9

Worst
3 ML-AP 8.35 90.9 8.07 57.4 7.24 11.7 12.10 97.9 12.30 80.1 13.10 52.3

TkML-AP-T 8.66 97.8 8.09 50.6 7.09 10.9 12.90 98.9 13.30 77.4 13.90 50.9
5 ML-AP - - 8.75 80.7 8.08 29.4 - - 13.80 94.1 14.20 68.9

TkML-AP-T - - 9.47 96.2 8.62 25 - - 15.60 98.3 16.00 72.2
10 ML-AP - - - - 8.81 69.2 - - - - 16.00 78.7

TkML-AP-T - - - - 10.10 94.7 - - - - 19.90 95.7

Table 13: Comparison of Pert and ASR (%) of the targeted attack methods with k=3, 5, 10 in the Best, Random, and Worst cases on two
datasets. The best ASR results are shown in bold. ϵ = 10.

C.5. Additional Targeted Attacking Performance

In the main paper, we set the projection threshold ϵ = 2
and report partial results. Here, we set more different pro-
jection thresholds such as ϵ = 1 in both TkML-AP-T and
ML-AP algorithms and show the performance in the Table
10. We also show the complete results in Table 11, 12 and
13 with setting ϵ = 2, 3, 10, respectively. From these Ta-
bles, we can see that the performance is increasing when ϵ
is increasing.

In the level of the cases, we find that the ASR score is
decreasing when the selected labels are hard to attack in the
same k values. For example, for k′ = 3 in the PASCAL
VOC 2014 dataset with ϵ = 2, the ASR score of the ML-AP
method is decreased from 96.2% (Best) to 86% (Random),

which has a 10.2% difference. This difference becomes
large from 86% (Random) to 68% (Worst), which has an
18% difference. On the other hand, for our method, we
can find the difference is 6.8% from 96.6% (Best) to 89.8%
(Random), and the difference becomes 14% from the 89.8%
(Random) to 75.8% (Worst). Comparing these difference
values between the two methods in the same scenario, we
can see that the difference from TkML-AP-T is smaller than
the difference of ML-AP. This means our method is more
robust than the ML-AP method. For the Pert values of
perturbation norms, we find that it is increased when the se-
lected labels are hard to attack in the same k values. This is
very intuitive because both methods need to add more per-
turbations to handle the hard tasks.


