UniT: Multimodal Multitask Learning with a Unified Transformer
(Supplementary Material)

A. Hyper-parameters and details of UniT

We summarize the hyper-parameters in our UniT model
in Table A.1. We also list the sampling probabilities of each
dataset during joint training in Table A.2 under different ex-
perimental settings.

Unused parameters in the optimizer. Some parameters
in our model (e.g. the task-specific output heads) are only
used on a subset of tasks and datasets. During develop-
ment, we first tried updating all parameters in the model
during training even if some parameters were not used in the
forward pass of a batch and their gradients remained zero.
However, we empirically found that this strategy some-
times caused the training to diverge. On the other hand,
the alternative strategy of skipping optimizer updates (in-
cluding momentum accumulation) on unused parameters in
a batch with zero gradients provides more stable training
— however, in some cases, this alternative training strategy
yields slightly lower scores (e.g. —0.2% lower accuracy on
VQAV2).

When jointly training on COCO detection, VG detection,
and VQAV2 with a shared decoder (Sec. 4.1 in the main pa-
per), divergence happens if we update unused parameters in
the optimizer, where the VQA accuracy stays around 25%.
The divergence might be related to a high overall sampling
probability on detection (0.667), such that the detection gra-
dients dominate the model. We find that the alternative
strategy (skipping unused parameters in optimizer) allows

Hyper-parameter Value
image encoder hidden size 256
image encoder head number 8
image encoder intermediate size 2048
image encoder layer number 6
image encoder dropout 0.1
decoder hidden size 768
decoder head number 8
decoder intermediate size 2048
decoder layer number 6
decoder dropout 0.1
batch size 64
learning rate Se-5
learning schedule warmup_cosine
warmup iterations 2000
Adam (31 0.9
Adam f2 0.999

Table A.1: A list of hyper-parameters in UniT.

the model to converge properly in this case. Meanwhile,
lowering sampling probabilities on detection datasets also
avoids such divergence on VQA, but gives lower detection
mAP than this alternative strategy.

B. Multitask learning in UniT

In this work, we propose UniT — a multi-task joint model
across several domains achieving comparable performance
to per-task models with 8 x fewer parameters. As discussed
in Sec. 2 in the main paper, our model is notably different
from previous work in the pretrain-and-transfer paradigm —
UniT is a joint and shared model instead of separately fine-
tuned ones.

While per-task fine-tuning could be useful for single-task
performance (and its results show that UniT can achieve
competitive single-task performance), it is not ideal towards
this multi-task goal, as one needs to save 8 separately fine-
tuned models to handle all 8 tasks, leading to 8 x total pa-
rameters compared to a single shared UniT model.

In Table 3 in the main paper, our multi-task model (line
5) achieves better performance on VQAv2 and SNLI-VE
but does not outperform separately-trained single-task mod-
els on pure vision or pure language tasks in line 1. We note
that while multi-task learning sometimes benefits individ-
ual tasks, there is not much prior evidence on vision-and-
language tasks helping pure vision tasks in a joint model
via multi-task learning (instead of pretraining). In particu-
lar, no prior work to the best of our knowledge shows VQA,
as compared to captioning, helps object detection via multi-
task learning. Rather, better VQA accuracy often comes
at sacrificing detection performance as detectors used in
VQA are heavily specialized, e.g. the detector trained in
BUTD [!] has relatively poor localization performance on
COCO classes.! Meanwhile, we handle both detection
and VQA with strong and comparable performance to prior
work. Similarly, on vision-and-language and pure language
tasks, we find that VisualBERT [3] has a noticeable drop on
GLUE accuracy? over the original BERT, while our model
solves vision-and-language tasks, GLUE as well as detec-
tion jointly with reasonable performance.

We emphasize that UniT handles all tasks in a shared
model, where knowledge on object detection and language
is not lost due to specializing to other tasks, in contrast to
prior work on pretrain-and-transfer. We believe UniT’s abil-

Ton COCO classes: 15.2 mAP@IoU=0.5 and 5.0 mAP@IoU=0.5:0.95
2drop on QNLI, MNLI, QQP, SST-2: —2.76, —2.50, —0.70, —2.06



# Experimental setting COCO det. VG det. VQAv2 SNLI-VE QNLI MNLI-mm QQpP SST-2
1 detection + VQA (Sec. 4.1) 0.33 0.33 0.33 - - - - -
2 all 8 tasks (Sec. 4.2) 0.20 0.07 0.26 0.12 0.10 0.10 0.10 0.05
3 ablation study (Sec. 4.2) 0.30 - - 0.50 - 0.20 - -

Table A.2: Sampling probabilities of each dataset for joint training under different experimental settings.

ity to jointly solve different tasks across domains is a critical
step towards general intelligence.

Also in our experiments, we show that UniT can be ap-
plied over a diverse set of tasks through a shared model,
even if some of them are usually considered unrelated (such
as object detection in vision and sentiment analysis in lan-
guage). This confirms that task compatibility is not a strict
requirement for UniT to learn a joint shared model. On the
other hand, we also find that some tasks are more compat-
ible than others for joint training. There are both benefits
from joint multi-task learning (because they can share su-
pervision) and competitions between tasks (due to a finite
model capacity). Given this intuition, we find that it is often
helpful to include more relevant and compatible tasks based
on prior knowledge (e.g. VQA benefits from better object
detection) or a systematic taskonomy evaluation.’

C. Additional ablation results

In Table C.1, we show more ablation results of our UniT
model on the three datasets, COCO detection, SNLI-VE,
and MNLI, under the same settings as in our ablation anal-
yses in Sec. 4.2 and Table 4 in our main paper:
¢ Image encoder hidden size: Increasing the hidden size

of the image encoder from 256 (default in DETR) to 768

(the BERT hidden size) leads to noticeably lower detec-

tion performance (line 2), which is possibly due to over-

fitting in the detection features.

« Initializing convnet backbone from ImageNet: Instead
of initializing the convolutional network backbone in the
image encoder from a detection-pretrained ResNet-50 in
DETR [2], in this setting (line 3) the backbone is initial-
ized from a ResNet-50 pretrained on ImageNet classifi-
cation. It can be seen that the classification-pretrained
backbone leads to lower COCO detection mAP. We sus-
pect this is due to a relatively small number of training
iterations on the COCO detection dataset — here we are
using a total of 500k iterations on three datasets, while
DETR [2] is trained for over 900k iterations (500 epochs)
on the COCO dataset alone.

¢ The number of queries in decoder: In this setting, we
vary the number of the query vectors in the decoder (i.e.
the length of the query embedding sequence q'*** in
Sec. 3.3) on SNLI-VE and MNLI (while keeping a fixed
number of 100 queries on the COCO detection task). We

3such as http://taskonomy.stanford.edu/

found that using only 1 query in the decoder (line 4)
results in slightly lower accuracy on SNLI-VE, which
is likely due to that the decoder needs to fuse multi-
ple modalities in this case for visual entailment reason-
ing and benefits from more input queries. However, in-
creasing the query number to 100 (line 5) does not give
higher accuracy on SNLI-VE than the default setting (25
queries).

* Learning rate: We found that the joint training perfor-
mance is sensitive to the learning rate. In line 6, train-
ing diverges with a higher learning rate (le-4) than the
default value of 5e-5. On the other hand, with a lower
learning rate (1e-5) in line 7, the COCO detection mAP
is noticeably lower while the SNLI-VE and MNLI accu-
racies are higher. These results show that different tasks
have different optimal learning rates, which adds to the

# Model configuration COCO det. SNLI-VE MNLI-mm

mAP accuracy accuracy
1 UniT (default, d¢=768, Ng=6) 38.79 69.27 81.41
2 ggi%tggncoder hidden size, 33.39 68.53 81.01
) et o wn o
5 number of queries=100 38.63 69.14 81.09

for SNLI-VE and MNLI-mm

6 learning rate=le-4 (training diverged in this setting)

7 learning rate=le-5 29.88 70.39 83.74
8 train for 1M iterations 39.96 69.31 79.88
9 init from COCO single-task 40.98 68.72 81.08

init from COCO single-task

38.88 65.77 61.47
w/ frozen encoders
similar to 10 but do not init.

1 detection class and box heads 37.18 65.01 >9.87

similar to 10 but only freeze

12 7.
vision encoder

37.87 68.70 81.11

Table C.1: Additional ablation analyses of our UniT model
with different model configurations on COCO detection,
SNLI-VE, and MNLI (under the same settings as in Sec.
4.2 in the main paper).
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difficulties of joint training. Our default setting (line 1)
uses a Se-5 learning rate as a balance across tasks. A pos-
sible future direction is to explore custom and adaptive
learning rates on different components of the model.

* More training iterations: Using 2x more training itera-
tions (1M) yields higher COCO detection mAP but lower
MNLI accuracy (line 8). We suspect it is because the de-
tection task requires a longer training schedule to output
a list of boxes and classes, while the MNLI dataset only
requires a single classification prediction and too many
iterations could cause overfitting.

* Initialization from the COCO single-task model: To
provide more training iterations on the detection task, in
line 9 we also experiment with initializing the multi-task
model from the single-task model trained on the COCO
detection dataset alone (i.e. COCO init. as described in
Sec. 4.1 in the main paper). As expected, initializing
from a COCO-pretrained single-task model leads to a no-
ticeably higher detection mAP (line 9 vs 1), but we also
see a slight performance drop on the other two datasets.

* Freezing the encoders in UniT: In multi-task training
with UniT, the image and text encoders are jointly trained
with the rest of the model. However, one might won-
der whether it is necessary or beneficial to train these
modality-specific encoders jointly. Is it possible to learn
the encoders once on individual uni-modal tasks and di-
rectly use them on other tasks without retraining?

In this setting, we experiment with pretrained and
frozen encoders. In line 10, we initialize the image en-
coder from a single-task model pretrained on COCO de-
tection (same as in line 9), initialize the text encoder from
a pretrained BERT model (bert-base-uncased), and freeze
both decoders during training. We also train another vari-
ant (line 11), which is similar to line 10 except that the
detection class and box heads are randomly initialized.

It can be seen that these two variants have signifi-
cantly lower performance on all three datasets. In line
12, we still freeze the image encoder but update the text
encoder (BERT) during training. It leads to better accu-
racy on MNLI and SNLI-VE that involve language un-
derstanding, but still relatively low detection mAP on
COCO. These results suggest that it is hard to build a
single shared decoder upon the frozen representations of
each modality and that the co-adaptation of the decoder
and the encoders is critical to multi-task training.

D. Learning curves

In Figure D.1, we show the learning curves of our uni-
fied model on all the 8 datasets with shared or separate de-
coders (Table 3 line 5 and 4 in the main paper), plotting the
per-task performance on the validation data against training
iterations. We also show the learning curves of the models

trained on a single dataset (Table 3 line 1) for reference.

It can be seen that in our multi-task models, the perfor-
mance of most tasks increases monotonically during train-
ing. However, SST-2 accuracy and QNLI accuracy reach
their peak in early iterations and slightly decline as the train-
ing goes on, likely due to overfitting on these two relatively
small datasets.

E. More visualizations

Figure E.1 shows additional predicted examples from
our UniT model across 8 datasets (Table 3 line 5 in the main
paper). The same model is applied to each task and dataset.
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Figure D.1: Learning curves of various experiments. The plots show the validation metrics at various iterations during the
training process of (a) shared decoders, (b) separate decoders, and (c - j) single task training for each of the tasks.



object detection (COCO det.)

visual question answering (VQAV2)

question: What item in the room is plaid? question: What is the man doing?  question: What kind of dessert is this? question: What color o; light is on?
answer: re

answer: cake

nswer: couch answer: skateboarding

visual entailment (SNLI-VE)

hypothesis: The white dog has a cat in its mouth.
prediction: co;tradiction

hypothesis: A white dog is napping on its bed.

hypothesis: Baseball pitcher and catcher yelling.
prediction: neutral

hypothesis: Two boys in the bathroom
prediction: entailment

prediction: contradiction

QNI MNLI-mm Qap SST-2
paragraph: As of that day, the new constitution premise: Captain Victor Saracini and First question 1: Is there areason  paragraph: allows us to hope that
heralding the Second Republic came into force. Officer Michael Horrocks piloted the Boeing  why we should travel alone?  nolan is poised to embark a
question: What came into force after the new 767, which had seven flight attendants. question 2: What are some major career as a commercial yet
constitution was herald? hypothesis: The Captain was Michael reasons to travel alone? inventive filmmaker.
prediction: answerable Horrocks and there were 4 flight attendants  prediction: equivalent sentiment: positive

aboard.
paragraph: For example, Joseph Haas was arrested  prediction: contradiction question 1: Why was the paragraph: in its best moments ,
for allegedly sending an email to the Lebanon, New Roman Empire so successful? resembles a bad high school
Hampshire city councilors stating, "Wise up or die."  premise: They were promptly executed. question 2: What are some production of grease , without
question: What year did the the case go before the  hypothesis: They were executed of the rarely known facts benefit of song.
supreme court? immediately upon capture. about the Roman Empire? sentiment: negative
prediction: cannot be answered prediction: neutral prediction: not equivalent

Figure E.1: More predictions of our model with a shared decoder (Table 3 line 5 in the main paper) across 8 datasets.



