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Figure 1. Detailed network structure of VMNet. We use a voxel-based 3D U-Net [6] as the contextual feature extractor, consisting of an
encoder and a decoder. Afterwards, at each level of the decoder, the aggregated contextual features are first projected from the Euclidean
domain to the geodesic domain, and then processed by the intra-domain attentive aggregation modules and the inter-doamin attentive fusion
modules defined over triangular meshes, yielding distinctive per-vertex features enriched with both the Euclidean and geodesic information.
The number above each layer indicates the feature channel.

Abstract

This supplementary document is organized as follows:

• Section A depicts the detailed network structure of VM-
Net.

• Section B provides image illustrations of the mesh sim-
plification methods used in VMNet.

• Section C shows more visualization results on the
ScanNet [2] and Matterport3D [1] datasets.

• Section D presents more complexity comparisons of
VMNet against other SOTA methods.

• Section E conducts an ablation study on Multi-level
Feature Refinement.

• Section F discusses the design choice of the proposed
inter-domain attentive module in VMNet.
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A. Detailed Network Structure

The network structure adopted in VMNet is illustrated
in Fig. 1. VMNet consists of two branches, in which one
operates on the voxel representation and the other oper-
ates on the mesh representation. In the upper branch (Eu-
clidean branch), taking the voxels as input, we employ the
widely used U-Net [6] style network for contextual fea-
ture aggregation. The network is mainly built upon sub-
manifold sparse convolution layers and sparse convolution
layers, both of which are originally introduced by Gra-
ham et al. [4]. In total, there are 7 levels of sparse vox-
els (S0, ...,Sl, ...,S6). At each level, there is a skip con-
nection between the encoder and decoder. In the lower
branch (geodesic branch), for each level of sparse voxels
Sl, we prepare a simplified triangular mesh Ml, which is
generated from the original mesh and has similar numbers
of vertices to those of the corresponding sparse voxels Sl.
At level l, the aggregated contextual features are extracted
from the decoder of the Euclidean branch and then projected
from voxels Sl to mesh vertices Ml through voxel-vertex
projection. On the mesh Ml, the projected Euclidean fea-
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tures are adaptively fused with the geodesic features utiliz-
ing the inter-domain attentive fusion modules. The fused
features are then refined through the intra-domain attentive
aggregation modules. The distinctive per-vertex features on
the last mesh level M0 are used for semantic prediction.

B. Mesh Simplification

Figure 2. Illustration of Vertex Clustering for mesh simplifica-
tion. Vertices falling in the same cell are merged to form a new
vertex. The resulting mesh might be non-manifold (red cell) or
have its topology changed (blue cell).

Figure 3. Illustration of Quadric Error Metrics based edge col-
lapse for mesh simplification. The edge between two red vertices
is collapsed and the resulting mesh is re-triangulated with its topol-
ogy preserved.

As described in Section 3.5 of the main paper, to con-
struct a mesh hierarchy for multi-level feature learning,
we adopt two well-known mesh simplification methods
from the geometry processing domain: Vertex Clustering
(VC) [7] and Quadric Error Metrics (QEM) [3]. In order
to facilitate readers’ understanding, we prepare the illustra-
tions of the two methods in Fig. 2 and Fig. 3.

C. Qualitative Visualization
In this section, we present more qualitative comparisons

on the ScanNet [2] and Matterport3D [1] datasets. As
shown in Fig. 6 and Fig. 7, our results are compared with
those by SparseConvNet [4], which operates on the Eu-
clidean domain solely and has a more complex network
structure than VMNet. Our results generally show a bet-
ter capacity of dealing with complex geometries, as well as
produce less ambiguous features on spatially close objects.

D. More Complexity Comparisons
With the same settings as in paper L. 681-701, we re-

port more complexity comparisons of our network against
other representative methods in Table 1. While achieving
the highest mIoU, VMNet is largely comparable to other
representative methods, in terms of both inference time and
parameter size.

Method Conv Category Params (M) Latency (ms) mIoU(%)
MVPNet[5] 2D-3D 24.6 95 64.1

PointConv[10] PointConv 21.7 307 66.6
KPConv[9] PointConv 14.1 52 68.4

DCM-Net[8] GraphConv 0.76 151 65.8
VMNet (Ours) Sparse+Graph Conv 17.5 107 74.6

Table 1. Comparisons additional to Table 3 in the paper.

E. Ablation: Multi-level Feature Refinement
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Figure 4. Ablation study: Multi-level feature refinement.

To measure the effects of individual geodesic feature re-
finement levels, we successively add the aggregation and
fusion modules to the overall architecture. Except for the
baseline with no geodesic branch, we start with the out-
ermost mesh levels M0&M1 to retain one fusion module
and two aggregation modules. Next, along with each added
mesh level, one fusion module and one aggregation module
are added. The results are presented in Fig. 4. We witness
that the first four levels bring the most performance gain,
indicating the higher importance of finer-level meshes for
geometric learning. We will add this experiment in the re-
vision and explore networks focusing on fine levels in the
future work.

F. Design Choice of Inter-domain Attention

Primal Inter-domain Attention

: Vertex with geodesic feature
: Vertex with Euclidean feature

Dual Inter-domain Attention

: Vertex with geodesic feature
: Vertex with Euclidean feature

Figure 5. Illustration of primal and dual inter-domain atten-
tion. (Left) The primal inter-domain attention generates query
vectors from the Euclidean features and aggregates the neighbor-
ing geodesic features. (Right) The dual inter-domain attention
generates query vectors from the geodesic features and aggregates
the neighboring Euclidean features.

As described in Section 3.4 of the main paper, we pro-
posed an inter-domain attentive module for adaptive fea-
ture fusion. The module takes both the Euclidean features
and the geodesic features as input and utilizes the attention
mechanism, in which the attention weights are conditioned



on features from both the domains. To build such an inter-
domain attentive module, there are two design choices. As
shown in Fig. 5, we denote the one used in VMNet as the
primal inter-domain attention and denote the other one as
the dual inter-domain attention. We empirically find that
the primal inter-domain attention yields better results than
the dual one (73.3% vs 72.8% in mIoU on ScanNet Val). It
may be caused by the different importance of the Euclidean
features and the geodesic features in the task of indoor scene
3D semantic segmentation.
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Figure 6. More qualitative results on ScanNet Val [2]. The key parts for comparison are highlighted by dotted red boxes.
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Figure 7. Qualitative results on Matterport3D Test [1]. The key parts for comparison are highlighted by dotted red boxes.


