
Worldsheet: Wrapping the World in a 3D Sheet
for View Synthesis from a Single Image

(Supplementary Material)

A. Continuous and large viewpoint changes
Our approach allows synthesizing continuous novel

views by smoothly moving to a new camera pose that is
largely different from the input. We kindly request the read-
ers to view the videos at worldsheet.github.io to better
understand the performance of our method. In these videos,
we compare our synthesized novel views (from a single im-
age) to SynSin [7] on the RealEstate10K dataset with simu-
lated large view-point changes (the first frame contains the
input view and the rest of the frames are synthesized). From
the videos, it can be seen that our model can generate novel
views with much larger camera translation and rotation than
in the training data, while SynSin often suffers from severe
artifacts in these cases, likely because its refinement net-
work does not generalize well to a sparser point cloud (re-
sulting from large camera zoom-in or rotation).

We also show in these videos continuously synthesized
novel views on high resolution (960 × 960) images over a
wide range of scenes (the first frame is the input view), as
described in our analysis in Sec. 4.3 in the main paper.

B. Ablation study: using depth supervision
In our experiments in the paper, we show that our model

can be trained using only two views of a scene without 3D
or depth supervision. In this section, we further analyze
our approach by training it with depth supervision on the
Matterport dataset, where the ground-truth depth can be ob-
tained from the Habitat simulator.

In this analysis, we modify the differentiable mesh ren-
derer to render RGB-D images from our mesh, and apply
an L1 loss between the ground-truth and the rendered depth
as additional supervision. We also compare with the perfor-
mance of SynSin with depth supervision (reported in [7]).
The results are shown in Table B.1. It can be seen that our
model without depth supervision (the default setting; line 7)
works almost equally as well as its counterpart using depth
supervision (line 8) on the Matterport dataset and general-
izes better to the Replica dataset. In addition, it outperforms
SynSin under both supervision settings (lines 5-6).

C. Additional analyses on RealEstate10K
As described in Sec. 4.2 in the main paper, we follow

the evaluation protocol of SynSin [7] on the RealEstate10K
dataset. To enable comparison with StereoMag [8] that uses

two input views on this dataset, in [7], the best metrics of
two views were reported for single-view methods. At test
time, for each target view, this involves making two separate
predictions based on two different input views respectively,
and then selecting the best metrics between the two predic-
tions as the score for this target view. Note that this evalu-
ation protocol is only applied to the RealEstate10K dataset
(in Table 3 and 4 in the main paper) and is not applied to
Matterport or Replica.

In this section, we further evaluate by taking the average
metrics over all predictions to measure how well the model
does on average from a single input view and to be consis-
tent with our evaluation on Matterport and Replica in Table
1 and 2 in the main paper. Apart from metrics over the entire
image, we would also like to analyze how well each model
does on rendering regions seen in the input view vs. invis-
ible regions (where things must be imagined). However,
we cannot compute the exact visibility map as there are
no ground-truth geometry annotations in the RealEstate10K
dataset. To get an approximation, we evaluate on the central
Wim

2 ×
Him

2 = 128× 128 crop of the target image (Center,
which is nearly always visible) and the rest of the image
(Peripheral, containing most of the invisible regions).

The results of these analyses are shown in Table C.1. It
can be seen that our method achieves the highest perfor-
mance on both the center regions (which are mostly visible)
and the peripheral regions, outperforms the previous single-
view based approaches by a large margin.

Our model uses a simple ResNet-50 backbone with an
output stride of 8 pixels to extract image features (see Sec.
3.1 in the main paper), while SynSin [7] adopts a U-Net
backbone that has a higher output feature resolution same
as the input image (i.e. output feature stride is 1 pixel). To
further study the impact of different backbone architectures,
we train a variant of SynSin by replacing its U-Net back-
bone with the same ResNet-50 backbone pretrained on Im-
ageNet (and upsampling its output feature map to stride 1
with a deconvolution layer) to be consistent with our model,
shown in line 4 in Table C.1. Comparing it with line 3 or
6, it can be seen that this variant of SynSin with ResNet-
50 backbone performs worse than the default SynSin archi-
tecture, or our model. This suggests that SynSin requires
a high-resolution feature output to build a per-pixel point-
cloud for view synthesis, while our model is able to work
with a lower resolution (a larger stride) in the backbone.

https://worldsheet.github.io


Matterport [1] Replica [4]

PSNR ↑ SSIM ↑ Perc Sim ↓ PSNR ↑ SSIM ↑ Perc Sim ↓
# Method Both InVis Vis Both InVis Vis Both InVis Vis

1 Im2Im [9] 15.87 16.20 15.97 0.53 0.60 0.48 2.99 0.58 2.05 17.42 0.66 2.29
2 Tatarchenko et al. [5] 14.79 14.83 15.05 0.57 0.62 0.53 3.73 0.74 2.50 14.36 0.68 3.36
3 Vox [3] w/ UNet 18.52 17.85 19.05 0.57 0.57 0.57 2.98 0.77 1.96 18.69 0.71 2.68
4 Vox [3] w/ ResNet 20.62 19.64 21.22 0.70 0.69 0.68 1.97 0.47 1.19 19.77 0.75 2.24

5 SynSin [7] 20.91 19.80 21.62 0.71 0.71 0.70 1.68 0.43 0.99 21.94 0.81 1.55
6 SynSin (w/ depth sup.) [7] 21.59 20.32 22.46 0.72 0.71 0.71 1.60 0.43 0.92 22.54 0.80 1.55

7 ours 24.67 22.90 26.00 0.82 0.77 0.82 1.05 0.35 0.54 23.51 0.85 1.32
8 ours (w/ depth sup.) 24.75 22.85 26.18 0.82 0.77 0.82 1.06 0.36 0.54 22.78 0.84 1.51

Table B.1: Analyses of our model and SynSin using explicit depth supervision during training (line 8 and 6) on the Matterport
dataset. Our model without depth (the default setting; line 7) performs almost equally as well as its counter part with depth
supervision (line 8) on Matterport and generalizes better to Replica, outperforming both variants of SynSin (line 5 and 6).
See Sec. B for details.

RealEstate10K [8] (averaged metrics over all predictions)

PSNR ↑ SSIM ↑ Perc Sim ↓
# Method Both Peripheral Center Both Peripheral Center Both Peripheral Center

1 Im2Im [9] 15.56 15.65 15.80 0.51 0.53 0.44 2.59 1.93 0.65
2 Tatarchenko et al. [5] 11.11 11.32 10.68 0.32 0.35 0.24 3.96 2.96 1.13
3 SynSin [7] 20.47 20.35 21.65 0.68 0.68 0.68 1.49 1.16 0.29
4 SynSin w/ R-50 backbone† 19.37 19.33 20.18 0.65 0.65 0.64 1.64 1.26 0.34
5 Single-View MPI [6] 21.17 20.90 23.03 0.70 0.70 0.71 1.59 1.27 0.31

6 ours (33× 33 mesh) 23.11 22.90 24.83 0.75 0.74 0.76 1.17 0.94 0.21
7 ours (65× 65 mesh) 23.41 23.20 25.17 0.75 0.75 0.76 1.14 0.92 0.21

Table C.1: Performance of our and previous approaches on the RealEstate10K dataset with metrics averaged over all predic-
tions, which is consistent with our evaluation on Matterport and Replica in Sec. 4.1 in the main paper. We evaluate on the
entire 256 × 256 image (both), the center 128 × 128 crop (nearly always visible), and the remaining peripheral regions
(containing most of the invisible regions). See Sec. C for details. (†: We also evaluate a variant of SynSin by replacing its
U-Net backbone with the same ResNet-50 backbone pretrained on ImageNet as used in our model.)

D. Details on differentiable texture sampler
Our differentiable texture sampler (Sec. 3.2 in the main

paper) splats image pixels onto the texture map through
each face. This splatting procedure involves three main
steps: forward-mapping, normalization, and hole filling.

Suppose the flow (u, v) = f(i, j) maps image coordi-
nates (i, j) to UV coordinates (u, v) on the texture map,
which can be obtained through mesh rasterization (here
we drop the face index k for simplicity). To implement
T̂ = splat(Iin, f) (Eqn. 5 in the main paper), we first
forward-map the image pixels to the texture map, using
bilinear assignment when the mapped texture coordinates
(u, v) do not fall on integers, as forward map below.

function T = forward_map(I, f)
T = all_zeros(W_uv, H_uv)
for i in 1:W_im
for j in 1:H_im
u, v = f(i, j)
uf, uc = floor(u), ceil(u)
vf, vc = floor(v), ceil(v)

T[uf,vf] += I[i,j] * (uc - u) * (vc - v)
T[uc,vf] += I[i,j] * (u - uf) * (vc - v)
T[uf,vc] += I[i,j] * (uc - u) * (v - vf)
T[uc,vc] += I[i,j] * (u - uf) * (v - vf)

end
end
return T

In the implementation above, gradients can be taken over f
through the bilinear weights.

However, forward mapping alone will lead to incorrect
pixel intensity (e.g. imagine down-scaling an image to half
its width and height by forward-mapping – each pixel in the
low-resolution image will receive assignment from 4 pixels
and become 4× brighter). Hence, a second normalization
step is applied:

T̂sum = forward map(Iin, f) (D.1)
Ŵsum = forward map(Ione, f) (D.2)

T̂norm = T̂sum/max
(
Ŵsum, 10−4

)
(D.3)

where Ione is anWim×Him image with all ones as its pixel
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Figure D.1: Our texture sampler is perspective-correct.

intensity. T̂norm contains the normalized splatting result. A
threshold 10−4 is applied to avoid division by zero (which
could happen due to holes described below).
Filling holes with Gaussian filtering. It is well known
that the bilinear forward mapping above often leads to holes
in the output (e.g. imagine up-scaling an image to a much
larger size – there will be gaps in the output image as some
pixels will not receive assignments). To minimize hole oc-
currence, in our UV texture map we assign the UV coordi-
nates of each mesh vertex with an equally-spacedWm×Hm

lattice grid, and use the same image size as the texture map
size (Wuv ×Huv = Wim ×Him). This ensures that most
texels on the texture map receive assignments in forward
mapping, so that holes rarely occur in T̂norm. However, to
address corner cases, we further apply a Gaussian filter to
fill the holes in T̂norm (where Ŵsum is zero as no assign-
ment is received from forward-mapping):

M̂ = I
[
Ŵsum > 0

]
(D.4)

T̂g =
(
Fg ∗ T̂norm

)
/
(
Fg ∗ M̂

)
(D.5)

T̂ = M̂ · T̂norm +
((

1− M̂
)
· T̂g
)

(D.6)

where Fg is a discrete 2D Gaussian kernel for image fil-
tering (we use kernel size 7 and standard deviation 2 for
Fg in our implementation). Here M̂ is a binary mask in-
dicating which pixels have received assignments in forward
mapping (i.e. 1 means valid and 0 means holes), T̂g is the
Gaussian-blurred version of T̂norm (where the division en-
sures the correct pixel intensity; otherwise it will be darker
due to holes in T̂norm) and is used to fill only the holes in
T̂norm. We use T̂ in Eqn. D.6 as the final splatting output.
Perspective correctness. A main purpose of our differen-
tiable texture sampler is to build perspective-correct novel
views during texture reconstruction. We note that the alter-
native solution of directly using the input image as a tex-
ture map by putting vertex uv texture coordinates in the
input screen space for mesh rendering breaks perspective
correctness, as shown in Figure D.1 (d). For perspective-
correct novel views, one needs to invert the texture-map-
to-image perspective transform when building UV texture
maps from the image, which we implement in our texture
sampler shown in Figure D.1 (c).

E. Details on multi-layered Worldsheets

In our proposed Worldsheet model, we build a scene
mesh by warping a planar sheet onto the scene. This model
is capable of handling moderate occlusion and generating
plausible novel views by deforming the mesh along object
boundaries and refining the predicted novel view with an
inpainting network. However, we also acknowledge that ar-
tifacts can sometimes occur in occluded regions or object
boundaries when the disparity is very large between the in-
put view and the novel view. This is partly because our
current approach of deforming a mesh onto the scene does
not capture all the fine-grained geometric details (such as
the flower boundary as shown in the last two failure cases
in the supplemental videos. We believe there is room for
improvement in this direction (e.g. via adaptive resolution),
which we are interested in exploring in future work.

In Sec. 3.5 in the main paper, we propose a simple ex-
tension with multi-layered Worldsheets. The main purpose
of this extension is to separate objects or scene structures at
different depth levels into different mesh layers, instead of
placing them all on a single sheet. In this extension, the 3D
mesh geometry of each layer provides the geometric sup-
port for the scene components, while the transparency chan-
nel in the RGBA texture maps allows segmentation between
different components. For example, to represent a sofa ob-
ject, a mesh layer can be wrapped onto a larger 3D surface
region covering the sofa surface, with its texture map con-
taining the sofa texture over the object region while being
transparent on the surrounding regions.

Specifically, we predict and warp a total of L mesh
sheets (i.e. L layers) onto the scene for view synthesis.
For each layer l = 1, · · · , L, we predict its grid offset(

∆x̂
(l)
w,h,∆ŷ

(l)
w,h

)
and its depth z(l)w,h from the convolutional

feature map {qw,h} similar to Sec. 3.1, and also predict a
pixel-wise transparency map α(l) of size Him×Wim in the
screen space of the input view as follows.

∆x̂
(l)
w,h =

tanh
(
W

(l)
1 qw,h + b

(l)
1

)
Wm − 1

(E.1)

∆ŷ
(l)
w,h =

tanh
(
W

(l)
2 qw,h + b

(l)
2

)
Hm − 1

(E.2)

z
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3

)
(E.3){
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}
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(
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(
{qw,h} ;W

(l)
4 , b

(l)
4

))
(E.4)

Here α(l)
i,j is the scalar alpha (i.e. transparency) value at im-

age pixel (i, j), deconv is a deconvolution (i.e. transposed
convolution) layer over the feature map with an output size
equal to the image size, and σ(·) is the sigmoid function to
transform the alpha values to the range between 0 and 1.
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Figure E.1: View synthesis examples on RealEstate10K
from our extension on multi-layered Worldsheets (see
Sec. E for details). The top rows show the predicted novel
views, while the bottom rows visualize each mesh layer
l = 1, ..., L (here L = 3) along with its RGBA texture map
in the input view (white is transparent). Through end-to-end
training with only 2D rendering losses, the model learns to
place scene structures at different depth levels onto different
mesh layers, and separate foreground objects (e.g. kitchen
counter, sofa, or table) from their background.

For each layer l = 1, · · · , L, we construct a correspond-
ing 3D mesh sheetM (l) following the procedure in Sec. 3.1
and also build its UV texture map T̂ (l) consisting of RGBA
channels by concatenating the predicted transparency val-
ues α(l)

i,j with the input image and splatting them onto the
mesh texture space using our differentiable texture sampler
in Sec. 3.2. Finally, we render all the mesh faces from
all L layers M (1), · · · ,M (L) in the novel view along with
their RGBA UV texture maps T̂ (1), · · · , T̂ (L) through alpha
compositing. The whole model can be trained end-to-end
under the same supervision using only 2D rendering losses.

We use a total of L = 3 layers in our analyses. Fig-
ure E.1 visualizes this extension on multi-layered World-
sheets. It can be seen that through end-to-end training, the
model learns to place scene structures at different depth lev-
els onto different mesh layers and separate foreground ob-
jects (e.g. kitchen counter, sofa, or table) from their back-
ground. We qualitatively find that it better handles occlu-
sions and parallax effect under large viewpoint changes, as
shown in Sec. 4.4 in the main paper.

F. Hyper-parameters in our model
In our nonlinear function g(·) to scale the network pre-

diction into depth values (in Eqn. 3 in the main paper), we
use different output scales based on the depth range in each
dataset. On Matterport and Replica, we use

g(ψ) = 1/(0.75 · σ(ψ) + 0.01)− 1. (F.1)

On RealEstate10K (which has larger depth range), we dou-
ble the output depth scale and use

g(ψ) = 2/(0.75 · σ(ψ) + 0.01)− 2. (F.2)

However, we find that the performance of our model is quite
insensitive to the hyper-parameters in g(·).

In our differentiable texture sampler and the mesh ren-
derer, we mostly follow the hyper-parameters in PyTorch3D
[2]. We use K = 10 faces per pixel and 1e-8 blur radius
in mesh rasterization, 1e-4 sigma and 1e-4 gamma in soft-
max RGB blending, and background color filled with the
mean RGB intensity on each dataset. On Matterport and
Replica, the input views have 90-degree field-of-view. On
RealEstate10K, we multiply the actual camera intrinsic ma-
trix of each frame into its camera extrinsic R and T ma-
trices, so that we can still use the same intrinsics and 90-
degree field-of-view in the renderer. On high resolution im-
ages in the wild (Sec. 4.3 in the main paper), we assume
45-degree field-of-view.

We choose our mesh size Wm and Hm based on the im-
age size. In our experiments on Matterport and Replica
(Sec. 4.1 in the main paper), we use 256 × 256 input im-
age resolution following SynSin [7], and use pixel stride
8 on the lattice grid sheet (from which our mesh is built),
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Figure G.1: Predicted depth maps from our scene mesh on
Replica (upper) and RealEstate10K (lower).

resulting in Wm = Hm = 1 + 256/8 = 33. On the
RealEstate10K dataset (Sec. 4.2 in the main paper), we ad-
ditionally experiment with pixel stride 4 on the grid sheet,
giving Wm = Hm = 1 + 256/4 = 65. In our analy-
sis on high resolution images in the wild (resized to have
the image long side equal to 960 and padded to 960 × 960
square size for ease of rendering in PyTorch3D; Sec. 4.3 in
the main paper), we useWm×Hm = 129×129 mesh on the
actual image regions (not including the padding regions).

G. More visualized examples
Figure G.1 shows the depth maps from our scene mesh,

where most of the scene structure is captured, giving coher-
ent novel view projections.

Figure G.2 shows additional visualization and error map
comparisons between our approach and SynSin on the
RealEstate10K dataset (similar to Figure 7 in the main pa-
per), where our method paints things in the novel view at
more precise locations with lower error and higher PSNR.
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Figure G.2: Additional synthesized novel views (with squared error maps of the target view) from our method and SynSin [7]
on the RealEstate10K dataset (darker is higher error). Our method paints things in the novel view at more precise locations,
resulting in lower error and higher PSNR.
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