
Supplementary Materials for ARAPReg: An As-Rigid-As Possible
Regularization Loss for Learning Deformable Shape Generators

Qixing Huang*
UT Austin

huangqx@cs.utexas.edu

Xiangru Huang*
UT Austin & MIT

xiangruhuang816@gmail.com

Bo Sun*
UT Austin

bosun@cs.utexas.edu

Zaiwei Zhang
UT Austin

zaiweizhang@utexas.edu

Junfeng Jiang
Hohai University

jiangjf.hhu@gmail.com

Chandrajit Bajaj
UT Austin

bajaj@cs.utexas.edu

DFAUST SMAL Bone
W.o. Decoupling 4.90 7.23 3.82
With Decoupling 4.52 6.68 3.76

Table 1: Ablation study on shape and pose variation. In
w.o. decoupling setting, all directions are penalized equally.
With decoupling setting is the setting in the main paper,
where pose directions are penalized more than shape direc-
tions.

A. More Quantitative Results

A.1. Ablation Study on Pose and Shape Variation
in Section 4.3

In the Section 4.2, we introduced decoupling shape and
pose variations to improve ARAPReg. Here we show an
ablation study of this decoupling. In Table.1, we show
MSE reconstruction error in AD framework w/w.o shape
and pose decoupling. Specifically, in the non-decoupling
setting, we use the L2 formulation in Proposition 2, where
all directions are penalized equally.

A.2. Comparison with ARAP deformation from the
base mesh

Here we show the comparison between our method and
the traditional ARAP deformation method, where an ARAP
deformation is applied between the base mesh and the out-
put mesh for regularization (c.f. [1, 2, 4]). In Table 2, we
show results on DFAUST and SMAL datasets. On DFAUST
dataset, there are large deformations among the underlying
shapes, and the approach of enforcing an ARAP loss to the
base shape is significantly worse than without the ARAP
loss. In the SMAL dataset, we pick all samples with the
same shape but different poses, the ARAP loss to the base
shape offers slight performance gains. However, ARAPReg
still outperforms this simple baseline considerably.

DFAUST SMAL
No ARAP 5.17 8.74

ARAP Deform. 24.55 7.67
Ours 4.52 6.68

Table 2: Comparison between our method and the tradi-
tional ARAP deformation method. We show reconstruction
errors of AD model without ARAP, with traditional ARAP
and with our method. The traditional method couldn’t han-
dle large pose variation and shape distortion.

B. More Implementation Details

B.1. Model Architecture

Our VAE model consists of a shape encoder and a de-
coder. Our AD model only contains a decoder. Both en-
coder and decoder are composed of Chebyshev convolu-
tional filters with K = 6 Chebyshev polynomials [3].The
VAE model architecture is based on [3]. We sample 4
resolutions of the mesh connections of the template mesh.
The encoder is stacked by 4 blocks of convolution + down-
sampling layers. The decoder is stacked by 4 blocks of con-
volution + up-sampling layers. There’s two fully connected
layers connecting the encoder, latent variable and the de-
coder. For the full details, please refer to our Github repos-
itory.

B.2. Reconstruction evaluation

In the AD model, there’s no shape encoder to produce
latent variables so we add an in-loop training process to op-
timize shape latent variables, where we freeze the decoder
parameters and optimize latent variables for each test shape.
In the VAE training, we also add some refinement steps
on the latent variable optimization where we freeze the de-
coder. We apply this refinement step to both methods w/w.o
ARAPReg.

C. More Results
In this section, we show more results of reconstruction

(Fig.1), interpolation (Fig.2) and extrapolation (Fig.3) of
our methods in variational auto-encoder (VAE) and auto-
decoder (AD) frameworks, with and without ARAPReg.
We also show more closest shapes for randomly generated
shapes in VAE framework with ARAPReg in Fig. 4.

D. Proofs of Propositions in Section 4.2
D.1. Proof of Prop.1

For a shape g 2 R3n with an infinitesimal vertex dis-
placement x 2 R3n and kxk2 ✏, the local rigidity energy
is

E(g, x) = min
{Ai2SO(3)}

X

(i,j)2E

wijk(Ai�I3)(gi�g
j
)�(xi�xj)k2

(1)
where Ai is a 3D rotation matrix denoting the local rotation
from g

i
� g

j
to (g

i
+ xi)� (g

j
+ xj). Note that here vector

indexing is vertex indexing, where g
i
= g3i:3(i+1).

Since the zero and first-order derivatives from E to x
around zero is 0:

E(g, x)|x=0 = 0,
@E(g, x)

@x
|x=0 = 0 (2)

We can use second-order Taylor expansion to approxi-
mate the energy E when x is around zero:

E(g, x) ⇡ 1

2
xT @

2
E

@x2
x (3)

Proposition 1 Given a function g(x) = miny f(x, y),
and define y(x) = (argmin)yf(x, y) such that g(x) =
f(x, y(x)),

@
2
g

@x2
=

@
2
f

@x2
� @

2
f

@x@y
(
@
2
f

@y2
)�1 @

2
f

@y@x
(4)

By treating each Ai as a function of x, we can rewrite
our energy as

E(g, x) = fg(x, A(x)) (5)

where A is the collection of all Ai.
By using Prop.1, we can get the Hessian from E to x.
In the above formulation, Ai is in the implicit form of x.

Now we use Rodrigues’ rotation formula to write is explic-
itly. For a rotation around an unit axis k with an angle ✓, its
rotation matrix is

Ai = I + sin✓ k ⇥+(1� cos✓)(k⇥)2 (6)

where k⇥ is the cross product matrix of vector k.

Since here we apply infinitesimal vertex displacement,
rotation angle ✓ is also infinitesimal. We can approximate 6
as

Ai ⇡ I + ✓k ⇥+
1

2
(✓k⇥)2 (7)

Let c = ✓k and only preserve the first two terms:

E(x) ⇡ min
{ci}

X

(i,j)2E

wijkci ⇥ eij � (xi � xj)k2 (8)

= min
{ci}

X

(i,j)2E

wijkeij ⇥ ci + (xi � xj)k2 (9)

where eij = p
i
� p

j

From Prop. 1, we can compute the hessian from E to x
by writing E(g, x) = fg(x, c(x)).

We rewrite our energy function in matrix form

E =
⇥
xT cT

⇤✓L⌦ I3 B

B
T

C

◆
x
c

�
(10)

where ⌦ denotes the kronecker product or tensor product.
The Hessian from E to x around zero is

HR(g) = L⌦ I3 �B
T
C

�1
B (11)

Now we compute each term of HR(g). Expand
fg(x, c(x)):

f(x, c(x)) =
X

(i,j)2E

wijkeij ⇥ ci + (xi � xj)k2

=
X

(i,j)2E

wij(x2
i
+ x2

j
� 2xixj + 2(eij ⇥ ci)T (xi � xj)

+ (eij ⇥ ci)T (eij ⇥ ci))

L is the weighted graph Laplacian,

Lij =

8
<

:

P
k2Ni

wik, i = j

�wij , i 6= jand(i, j) 2 E
0, otherwise

(12)

The matrix B is a block matrix whose 3 ⇥ 3 blocks are
defined as

Bij =

8
<

:

P
k2Ni

wikeik⇥, i = j

�wijeij⇥, i 6= j, (i, j) 2 E
0, otherwise

(13)

Finally,C = diag(C1...C|P |) is a block diagonal matrix

Ci =
X

j2Ni

wij(eij⇥)T (eij⇥) (14)

=
X

j2Ni

wijkeijk22I3 � eijeT
ij

(15)

which ends the proof. ⇤

0cm

2cm

0cm

0cm

4cm

2cm

Ground truth VAE VAE+ARAP AD AD+ARAP

Figure 1: More qualitative results of reconstruction. We show results using VAE and AD generator w/w.o ARAPReg.

D.2. Proof of Prop.2
Consider the eigen-decomposition of

HR(g, J) := U⇤UT
,

VAE VAE+ARAP AD AD+ARAP

Figure 2: More interpolation results. We show results using VAE and AD generator w/w.o ARAPReg.

Center Shape VAE VAE+ARAP AD AD+ARAP

Figure 3: More extrapolation results. We show results using VAE and AD generator w/w.o ARAPReg.

where

⇤ = diag
�
�1(HR(g, J)), · · · ,�k(HR(g, J))

�
.

Let y = U
Ty. Then

Z

y
yT

HR(g, J)y =

Z

y
yT⇤y =

Z

y

kX

i=1

�i(HR(g, J))y
2
i

=
kX

i=1

�i(HR(g, J))

Z

y
y2
i
dy

=
1

k

kX

i=1

�i(HR(g, J))

Z

y

kX

i=1

y2
i
dy

=
Vol(Sk)

k

kX

i=1

�i(HR(g, J).

Generated Shapes

Closest Shapes

Figure 4: Randomly generated shapes from our VAE frame work and their closed shapes in the training set.

⇤

E. Gradient of Loss Terms
This section presents the gradients of the loss to the rigid-

ity term.
For simplicity, we will express formulas for gradient

computation using differentials. Moreover, we will again
replace g✓ and @g✓

@z (z) with g and J whenever it is pos-
sible. The following proposition relates the differential of
rR(g, J) with that of HR(g, J)).

Proposition 2

drR(g, J) = ↵

kX

i=1

uT

i
d(HR(g, J))ui

�
1�↵

i
(HR(g, J))

. (16)

Recall that �i and ui are eigenvalues of eigenvectors of
HR(g, J)).

Proof: The proof is straight-forward using the gradient of
the eigenvalues of a matrix, i.e.,

d� = uT
dHu

where u is the eigenvector of H with eigenvalue �. The rest
of the proof follows from the chain rule. ⇤

We proceed to describe the explicit formula for comput-
ing the derivatives of uT

i
d(HR(g, J))ui. First of all, ap-

plying the chain rule leads to

uT

i
d(HR(g, J))ui = 2

⇣
(Jui)

T
HR(g)(dJ · ui)

� (A(g)Jui)
T
D(g)�1 ·

�
dA(g) · (Jui)

�⌘

+
�
D(g)�1

A(g)Jui

�T
dD(g)

�
D(g)�1

A(g)Jui

�
.

It remains to develop formulas for computing dJ · ui,
dA(g) · (Jui), and dD(g). Note that J = @g✓

@z (z). We
use numerical gradients to compute dJ · ui, which avoid
computing costly second derivatives of the generator:

d(
@g✓

@z
(z)) · ui ⇡

kX

l=1

uil(dg
✓(z + sel)� dg✓(z)) (17)

where s = 0.05 is the same hyper-parameter used in defin-
ing the generator smoothness term; el is the l-th canonical
basis of Rk; uil is the l-th element of ui.

The following proposition provides the formulas for
computing the derivatives that involve A(g) and D(g).

Proposition 3

dA(g) · (Jui) = �A(Jui) · dg

cT dD(g) · c = 2
nX

i=1

X

k2N (i)

⇣
(gi � gk)

T (dgi � dgk)kcik2

�
�
cT
i
(dgi � dgk)

�
·
�
(gi � gk)

T ci
�⌘

(18)

Proof:

(1). dA(g) · (Jui):

Let’s denote Jui as a. Now we prove (A(g) · a) =
(A(a) · g). Then we will have d(A(g))vJui = d(A(g) ·
Jui) = d(A(Jui) · g) = A(Jui) · d(g).

(A(g)a)i =
X

j

Aij(g)aj

=
X

k2N(i)

vik ⇥ (ai � ak) =
X

k2N(i)

vik ⇥ aik

= �
X

k2N(i)

aik ⇥ vik =
X

j

Aij(a)gj

= (A(a)g)i

This finishes the proof.
(2). cT dD(g) · c:
We have cT

i
Dii(g) · ci =

P
k2N(i)(kvikk2kcik2 �

cT
i
vikvT

ik
· ci). We only need to compute the gradient of

kvikk2 and vikvT

ik
. Note that kvikk2 = vT

ik
vik.

For a vector a, we have d(aTa) = d(aT)a+aT
d(a) =

d(a)Ta + aT
d(a) = 2aT

d(a) and similarly, d(aaT) =
2d(a)aT . We use these two results to our derivation and
we will get the results above.

cT dD(g) · c

=
X

i

X

k2N(i)

(d(kvikk2)kcik2 � cT
i
d(vikv

T

ik
) · ci)

=
X

i

X

k2N(i)

(d(vT

ik
vik)kcik2 � cT

i
d(vikv

T

ik
) · ci)

=
X

i

X

k2N(i)

2
⇣
(gi � gk)

T (dgi � dgk)kcik2

�
�
cT
i
(dgi � dgk)

�
·
�
(gi � gk)

T ci
�⌘

References
[1] Marc Habermann, Weipeng Xu, Michael Zollhöfer, Gerard

Pons-Moll, and Christian Theobalt. Deepcap: Monocu-
lar human performance capture using weak supervision. In
2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020, pages 5051–5062. IEEE, 2020. 1

[2] Xueting Li, Sifei Liu, Shalini De Mello, Kihwan Kim, Xi-
aolong Wang, Ming-Hsuan Yang, and Jan Kautz. Online
adaptation for consistent mesh reconstruction in the wild.
In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances
in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020. 1

[3] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and Michael J
Black. Generating 3d faces using convolutional mesh autoen-
coders. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 704–720, 2018. 1

[4] Keyang Zhou, Bharat Lal Bhatnagar, and Gerard Pons-Moll.
Unsupervised shape and pose disentanglement for 3d meshes.
In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-
Michael Frahm, editors, Computer Vision - ECCV 2020 - 16th

European Conference, Glasgow, UK, August 23-28, 2020,
Proceedings, Part XXII, volume 12367 of Lecture Notes in
Computer Science, pages 341–357. Springer, 2020. 1

