
Supplementary for
ASCNet: Self-supervised Video Representation Learning

with Appearance-Speed Consistency

In this supplementary, we shall provide more implemen-
tation details and experimental results of our proposed AS-
CNet. We organize the supplementary materials as follows.

• In Section A, we discuss the architectures of the pro-
jection and predictor in ASCNet.

• In Section B, we provide the configurations for down-
stream action recognition and video retrieval tasks.

• In Section C, we show the implementation details of
the memory bank for appearance-based feature re-
trieval.

• In Section D, we provide more experimental results of
our ASCNet under linear evaluation protocol.

• In Section E, we show the detailed structure of differ-
ent video encoder backbones applied in ASCNet.

A. Architectures of Projection and Predictor
We apply 3D convolutional residual network [5] with

18 layers (3D R18) as the default video encoder f(·, θ).
We also consider R(2+1)D [13] and S3D-G [14]. Specifi-
cally, we use the output of the final average pooling layer
as the representation of the corresponding video clip. The
output dimension is 512 for 3D R18 and R(2+1)D, and
1024 for S3D-G. Similar to SimCLR [1], we conduct pro-
jections ga(·, θa) and gm(·, θm) to the task corresponding
representations, respectively. These projections are both
multi-layer perceptrons (MLP) and have the same archi-
tecture, as shown in Figure 1. The MLP contains a linear
layer to project the representation to a dimension of 4096.
After a batch normalization [7] and a rectified linear unit
(ReLU) [9] layer, we apply another linear layer to project
the representation to a dimension of 256 as the final pro-
jection output. The architectures of predictors ha(·, θ′a) and
hm(·, θ′m) are the same as ga(·, θa).

B. Configurations for Downstream Tasks
To evaluate the pre-trained representation for the down-

stream action recognition task, we remove the projection
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Figure 1: Structure of the projection and predictor. FC
denotes fully-connected layer and the number beside it
means its output dimension. BN denotes batch normaliza-
tion. ReLU denotes rectified linear units.

and add a linear layer with the dimensions of input and out-
put fitting specific tasks. There are 101 classes in UCF-101
dataset [11] and 51 in HMDB-51 dataset [8]. For the video
retrieval task, we use the raw outputs. The details are shown
in Table 1.

Downstream task Backbone Input Output

Action recognition
3D R18 512

num classR(2+1)D 512
S3D-G 1024

Video retrieval
3D R18 512

∗R(2+1)D 512
S3D-G 1024

Table 1: Configuration of the linear layer. The num-
bers in Input column are the dimensions of the linear layer.
num class denotes the number of actions in the target
dataset. ∗ indicates that the output dimensions is the same
as input dimensions for video retrieval task.
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C. More Details of Memory Bank
Inspired by MoCo [6], we adopt the memory bank to

facilitate the appearance-based feature retrieval strategy de-
scribed in section 3.3.1. Instead of collecting negative sam-
ples, we use the memory bank to retrieve positive samples
for SCP task. The memory bank is a dictionary that maps
the appearance features to their corresponding motion fea-
tures. During the training process, we extract the appear-
ance features from the target network and find the indices
of the most similar (measured by dot-product similarity) ap-
pearance features in the memory bank. Then we use the
indices to retrieve corresponding motion features for SCP
task. For each iteration, we update the memory bank with
both appearance and motion features extracted from the tar-
get network and keep the most recent K samples. We use
K = 32768 in all our experiments. We maintain two sepa-
rate memory banks for different playback speeds.

D. Linear Protocol for Action Recognition
Apart from fine-tuning all layers in the network on UCF-

101 [11] and HMDB-51 [8] as in Section 4.4, we also pro-
vide the results under common linear protocol [6, 1, 2, 10]
for action recognition tasks in Table 2. In this protocol,
the entire video encoder is frozen, and only a single linear
layer is trained with cross-entropy loss. We train the lin-
ear classifier on top of the video backbone for 100 epochs
with an initial learning rate of 0.1. We use SGD as opti-
mizer and the weight decay of SGD is set to 0, following
the same settings as MoCo [6]. ASCNet shows competitive
performance compared with single and multi-modal meth-
ods [3, 4], by using only RGB modality on Kinetics-400.

Method Date Dataset Res. Arch. Mod. UCF HMDB
CBT [12] 2019 K600+ 112 S3D-G R 54.0 29.5
MemDPC [3] 2020 K400 224 3D R34 R+F 54.1 30.5
CoCLR [4] 2020 K400 128 S3D-G R+F 74.5 46.1
ASCNet K400 112 3D R18 R 68.2 44.9

Table 2: Comparison with state-of-the-art approaches. We
report the top-1 accuracy (%) on linear evaluation for action
recognition task on UCF-101 and HMDB-51 datasets. For
input, ‘R’ refers to RGB only, ‘F’ is optical flow.

E. Structures of Video Encoders
The flexibility of ASCNet allows us to study a variety

of video backbones. In this paper, we encode a video se-
quence using various common architectures as backbones.
We show the detailed structure of different video backbones
used in the experiments: R(2+1)D [13] (Table 3) and 3D
ResNet-18 [5] (Table 4). We refer the readers to [14] for
the detailed structure of S3D-G. We denote spatio-temporal

size by T × S2 where T is the temporal length and S is the
height and width of a square spatial crop.

Stage Layer Output size
raw - 16 ×112 ×112

conv1
1×7×7, 83, stride 1, 2, 2 16×56×563×1×1, 64, stride 1, 1, 1

res2

 1×3×3, 144
3×1×1, 64

1×3×3, 144
3×1×1, 64

 16×56×56

res3

 1×3×3, 230
3×1×1, 128
1×3×3, 288
3×1×1, 128

 8×28×28

res4

 1×3×3, 460
3×1×1, 256
1×3×3, 576
3×1×1, 256

 4×14×14

res5

 1×3×3, 921
3×1×1, 512
1×3×3, 1152
3×1×1, 512

 2×7×7

global average pool, fc 1×1×1

Table 3: The structure of the video encoder f(·; θ) with
R(2+1)D. Note that both output size and kernel size are in
T×W×H shape.

Stage Layer Output size
raw - 16 ×112 ×112

conv1 7×7×7, 64, stride 1, 2, 2 16×56×56
pool1 3×3×3 max, stride 2, 2, 2 8×28×28

res2

[
3×3×3, 64
3×3×3, 64

]
×2 8×28×28

res3

[
3×3×3, 128
3×3×3, 128

]
×2 4×14×14

res4

[
3×3×3, 256
3×3×3, 256

]
×2 2×7×7

res5

[
3×3×3, 512
3×3×3, 512

]
×2 1×4×4

global average pool, fc 1×1×1

Table 4: The structure of the video encoder f(·; θ) with 3D
ResNet-18. Note that both output size and kernel size are in
T×W×H shape.
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