
Appendix

In this supplementary material, Section A gives more
implementation details about architecture and optimization.
Section B presents more results on different types of low-
level perceptual variations. Section C studies the contribu-
tion of each component in our approach. Section D analyzes
the influence of hyper-parameters. Section E provides the
unsupervised version of Lreg and the mathematical deriva-
tion of Lw.

A. More Implementation Details

The network architectures of content encoder Ec and
degradation encoder Ed are respectively given in Table 1
and Table 2, while the structure of degradation attacker Ad

is illustrated in Figure 1. The network implementation of
the generator G and the discriminator D follows [46]. Note
that the architecture of content encoder Ec is similar to the
structure encoder in [46] without using 1-channel inputs.

The optimization process of our proposed approach is
described in Algorithm 1.

Algorithm 1 Attack-Guided Perceptual Data Generation.
1: Train the disentangled generative model which consist

of Ec, Ed and G.
2: Estimate the real-world degradation distribution Dd.
3: Train the degradation attacker Ad when the generative

model is fixed.
4: For each sample I from the training set do:
5: a. Produce Ns augmented samples I ′ based on Dd;
6: a. Produce an adversarial sample I ′′ based on Ad;
7: c. Extract identity features of all samples;
8: d. Compute losses Lcls, Lsc and Lw;
9: e. Update identity encoder Eid.

Figure 1. The network structure of the degradation attacker Ad.
All activation functions (Tanh for the last layer and ReLU for the
rest) are not shown for simplification.

B. More Types of Perceptual Variations

As shown in Table 3, we provide more results with new
types of low-level variations based on synthetic low-quality

Layer Parameters Output Size

Input - 3× 256× 128

Conv1 [3× 3, 16] 16× 128× 64
Conv2 [3× 3, 32] 32× 128× 64
Conv3 [3× 3, 32] 32× 128× 64
Conv4 [3× 3, 64] 64× 64× 32

ResBlocks
[
3× 3, 64
3× 3, 64

]
× 4 64× 64× 32

ASPP

[1× 1, 32]

128× 64× 32
[
1× 1, 32
3× 3, 32

]
× 3

Conv5 [1× 1, 128] 128× 64× 32

Table 1. Architecture of the content encoder Ec.

Layer Parameters Output Size

Input - 3× 256× 128

Conv1 [3× 3, 16] 16× 128× 64
Conv2 [3× 3, 16] 16× 128× 64
Conv3 [3× 3, 32] 32× 64× 32
Conv4 [3× 3, 64] 64× 32× 16
Conv5 [3× 3, 64] 64× 16× 8
Conv6 [3× 3, 64] 64× 8× 4

AvgPool - 64× 1× 1

Table 2. Architecture of the degradation encoder Ed.

Market-1501 datasets. Our proposed method is able to con-
sistently improve the baseline performance against different
types of low-level perceptual variations. In fact, if we as-
sume that each variation is independent of each other, our
method can further handle the entangled case, e.g., Res. +
Illu., by defining a hybrid degraded function which is used
to synthesize normal-degraded image pairs.

C. More Ablation Studies
To study the contribution of each component in our ap-

proach, we further conduct comprehensive ablation analy-
sis on the MLR-CUHK03 and MLR-VIPeR datasets, as re-
ported in Table 4. The ‘w/o hard’ configuration denotes
that the max operation (i.e., hard sample mining) in the
self-center loss is replaced by an average operation.

It can be observed that all the components consistently
result in improvements, where the self-center loss achieves
the most significant performance gains, e.g., 7.2% and
14.0% at Rank-1 on the MLR-CUHK03 and MLR-VIPeR
dataset, respectively. This is because the self-center loss di-



rectly leverages augmented samples to regularize the feature
manifold, resulting in robust identity representation learn-
ing.

D. Hyper-parameter Analysis
Here we show how the hyper-parameter Ns affects the

Re-ID performance, as illustrated in Figure 2. It can be
observed that the Rank-1 scores on the three datasets can be
consistently improved with the increase of Ns at first, and
then reaches a steady state with slight fluctuations. We also
find that even with a small Ns, satisfactory results can be
achieved. This improvement benefits from the hard sample
mining for self-center loss as well as perceptual resampling
based on the estimated real-world degradation distribution.
The other hyper-parameters, such as balancing weights λsc

Method Low-level Variation Types
Noise Motion Illu. Res.+Illu.

Baseline 74.2 68.0 73.0 63.6
Ours 79.7 76.8 80.3 70.9

Table 3. Rank-1 score (%) on low-quality Market-1501 datasets,
where Res. denotes resolution and Illu. denotes illumination.

Method MLR-CUHK03 MLR-VIPeR
Rank-1 Rank-5 Rank-1 Rank-5

w/o Ltri
adv 83.3 95.1 50.3 76.6

w/o Latt
adv 80.8 95.4 48.4 76.9

w/o hard 85.5 96.9 51.3 77.8
w/o Lsc 80.4 93.5 38.2 67.8
w/o Lw 86.1 97.1 48.5 78.1

Ours 87.6 97.5 52.2 79.7

Table 4. Ablation analysis on the MLR-CUHK03 and MLR-
VIPeR datasets.

Figure 2. Analysis of the hyper-parameter Ns which controls the
number of augmented samples for each input sample.

and λw, are determined by grid search on the val set of the
MLR-CUHK03 dataset.

E. Details of Loss Functions
The supervised score regression loss Lreg requires the

domain division (e.g., LR/HR) of training data to provide
labels. For MSMT17 dataset, however, no such a domain
division can be used, hence we further introduce an unsu-
pervised score regression loss based on degradation ranking
and pseudo-labels.

Considering an input image pair (I, Ide), where Ide is
the degraded version of I produced by a non-differentiable
degraded function, their corresponding perceptual quality
scores (s, sde) should satisfy s > sde, which leads to a score
ranking loss:

Lrank
reg = max(−1× (s− sde) + ∆s, 0), (1)

where ∆s is set to 1.0 empirically.
In order to make full use of the non-synthetic images

I , pseudo-labels are assigned so that the supervised MSE
regression loss is available:

Lmse
reg = ‖s− spse‖2, (2)

where the estimated pseudo-labels:

spse =

{
1, s ≥ 0

−1, s < 0
. (3)

As a result, the unsupervised score regression loss can be
defined as:

Lreg = λrankreg Lrank
reg + λmse

reg L
mse
reg , (4)

where λrankreg is set to 1.0, while λmse
reg is initialized to 0 then

linearly increases to 1.0 for training stability.
The Wasserstein loss Lw. Given identity embeddings

ẽ ∼ N (µ,Σ) and ẽ∗ ∼ N (µ∗,Σ∗), we employ the standard
2-Wasserstein distance to measure the similarity of these
two Gaussian distributions:

W2(ẽ,ẽ∗)2 = ||µ− µ∗||22+

trace(Σ + Σ∗ − 2(Σ
1
2 Σ∗Σ

1
2 )

1
2 ).

(5)

Assuming that ΣΣ∗ = Σ∗Σ, it can be further simplified and
derive the Wasserstein loss we used:

Lw ,W2(ẽ,ẽ∗)2 = ||µ− µ∗||22 + ||Σ 1
2 − Σ∗

1
2 ||2F . (6)


