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1. GLoRIA Implementation Details
1.1. Data preprocessing

We use the CheXpert [7] dataset to train our represen-
tation learning framework. Radiology reports are not in-
cluded as part of the original dataset, so we request them
from the corresponding authors. We use all frontal chest
radiographs in the dataset, which contain 191,229 image-
text pairs in total. For each image, we resize the larger side
to 256 pixels and use zero-padding on the smaller side to
get the final image size of 256 × 256. All images are nor-
malized to range [0, 1] before feeding into the model. For
textual data, we use the impression section of the radiology
reports which include detailed description of medical con-
ditions such as subtypes, locations and severity. We prepro-
cess all reports by picking out sequences of alphanumeric
characters and drop all other characters and symbols. We ig-
nore any samples with report containing less than 3 words.
Next, we use the WordPiece tokenizer provided by BioClin-
icalBERT [11] to tokenize the input sentences. We set the
maximum token length for the tokenizer to 97, which is the
95th percentile reports lengths in the training dataset.

1.2. Model implementation

Text encoder. We use the BERT [3] model initial-
ized with weights from BioClinicalBERT [1], which is pre-
trained using reports from the MIMIC III dataset [8]. The
BERT model contains 12 layers of self-attention encoders
and a final prediction linear layer. We use implementa-
tions by the HuggingFace python library [15] for our BERT
model. We sum outputs from the last four layers of the
BERT model to represent the semantic meaning of each to-
ken. The feature matrix for each encoded report is indicated
by e ∈ R768×T , where 768 is the dimension of the word
vector and T is the number of tokens in the text. The ith col-
umn ei of the feature matrix is the embedding vector for the
ith word. We take the average of the word embedding vec-
tors over all the T tokens as the sentence embedding vector
ẽ ∈ R768.

Image encoder We adopt the ResNet-50 architecture
provided by the torchvision python library as our image en-

coder. The ResNet architecture includes 4 bottleneck blocks
of residual convolutional layers and a linear classification
layer. Using the preprocessed 256 by 256 pixels image, we
extract the feature maps from the 3rd bottleneck building
block f ∈ R1024×19×19 of the ResNet model as the lo-
calized image sub-region features, which are reshaped to
feature matrix f ∈ R1024×361. 1024 corresponds to the di-
mension of the feature vectors while 361 is the number of
image regions. The global image representation f̃ ∈ R1024

is extracted from the final adaptive average pooling layer of
the ResNet-50 model.

1.3. Training details

We project the global and local features from both
modalities to a multimodal representation space with di-
mension d = 768. All linear layers for representation learn-
ing are initiated with uniform weight between -0.1 and 0.1.
We set the temperature parameters τ1 = 4.0, τ2 = 5.0 and
τ3 = 10.0 (Equation 1, 2, 6, 7 & 8). During representation
learning, we use the Adam optimizer [9] with an initial
learning rate of 5e-5 and weight decay of 1e-6. We set the
learning rate scheduler to monitor the validation loss and
anneal the learning rate by a factor of 0.5 after 5 epochs of
plateau. We use batch size of 48 and 16 bit precision to fit
the GPU during training. We set the maximum number of
epochs to 50, and save the model checkpoint that achieves
the lowest validation loss as the final model.

2. Classification Implementation Details
2.1. Data preprocessing

We use CheXpert and the RSNA Pneumonia datasets
[14] for supervised classification and the CheXpert 5x200
dataset for zero-shot classification. For all 3 datasets, we
resize the larger side of the image to 256 pixels and use
zero-padding on the smaller side to get an image size of
256× 256. All images are normalized before feeding in the
model. For both CheXpert and CheXpert 5x200 dataset, we
conduct classification on 5 categories, which are the com-
petition tasks in the CheXpert challenge selected based on
clinical importance and prevalence: (a) Atelectasis, (b) Car-



diomegaly, (c) Consolidation, (d) Edema, and (e) Pleural
Effusion.

2.2. Model implementation

We use the ResNet-50 [6] architecture provided by the
torchvision python library as our classification model. For
random initialization, all the weights of ResNet model
are randomly initialized. For imagenet initialization, the
weights pretrained using ImageNet for classification are
used to initialized the ResNet model. For all other meth-
ods, we use the pretrained weights from the representation
learning step.

2.3. Training details

During training, we freeze all the weights from the
ResNet-50 model except for the final classification layer.
We use the Adam optimizer [9] with an initial learning rate
of 1e-4 and weight decay of 1e-6. The classifier is trained
using the Binary Cross Entropy loss function. We set our
learning rate scheduler to monitor the validation loss and
anneal the learning rate by a factor of 0.5 after 5 epochs of
plateau. We use batch size of 64 and 16 bit precision to
fit the GPU memory during training. We set the maximum
number of epochs to 50, and save the model checkpoint that
achieves the lowest validation loss. These hyper-parameters
are tuned via a systematic search on 10% of the CheXpert
dataset.

3. Segmentation Implementation Details

3.1. Data preprocessing

We use the SIIM Pneumothorax Dataset to train our seg-
mentation model. Both the images and the segmentation
masks are resized to 512x512 pixels. For augmentation
on the training set, we apply ShiftScaleRotate provided by
the albumentations python library, which includes random
affine transforms of translation, scaling and rotation. We
set the rotation limit to 10, scale limit to 0.1 and augmen-
tation probability to 0.5. Images from both the training and
validation set are normalized to range [0,1].

3.2. Model implementation

We use the UNet [13] architecture with ResNet-50 back-
bone implemented by the Segmentation-Models-PyTorch
library. For random initialization, all weights are randomly
initialized. For imagenet initialization, weights pretrained
using ImageNet for classification are used to initialize the
encoder portion of the UNet model. For all other methods,
we use pretrained weights from the representation learning
step to initialize the encoder.

Figure 1. UMAP visualization of the global image representations
for samples from the CheXpert 5x200 dataset using different pre-
trained weights.

3.3. Training details

During training, we use the Adam optimizer with an
initial learning rate of 5e-4 and a weight decay of 1e-6.
We set our learning rate scheduler to monitor the vali-
dation loss and anneal the learning rate by factor of 0.5
after 3 epochs of plateau. We use a combined loss of
α ∗ FocalLoss + DiceLoss and set α = 10. Due to
computation constraints, we train the segmentation model
with a batch size of 4 and apply gradient accumulation for 8
batches. We set the maximum number of epochs to 100 and
save the model checkpoints that achieve the highest valida-
tion dice score. The hyperparameters are set based on the
model initialized with ImageNet pretrained weights.

4. Qualitative Results
4.1. Global embedding visualization

As a qualitative evaluation of the global representations
learned via GLoRIA, we present the UMAP [12] plots of
the global representations for all samples in the CheXpert
5x200 dataset in the Fig. 1. This allows us to understand
how well our pretraining strategy help separate images from
different classes in the representation space. The features
are extracted from the vision encoder after the representa-
tion learning step is complete. More separated cluster for
each category indicates that our method is able to learn bet-
ter distinguishable semantic features. Compared to natural
images, medical images have high visual similarities even
for samples from different classes. This is due to the stan-
dardized protocols for medical image acquisition and the
homogeneous nature of human anatomy. Furthermore, the



Figure 2. Examples of frontal chest radiographs of the chest (top)
with corresponding attention weights for the given word (below).

CheXpert 5x200 is a subset of the CheXpert training set,
which contains noisy labels resulting from the limitations
of the CheXpert NLP labeler. Therefore, clustering for dif-
ferent categories using these images is a challenging task.
From Fig. 1, it is clear that our pretrained model leads to
more separable clusters with only global image represen-
tations, as compared to imagenet and randomly initiated
models. Furthermore, since the global learning objective
of our model uses the same loss function as ConVIRT, the
global representations from our method and ConVIRT are
expected to be comparable.

4.2. Visualization of attention weights

We visualize the attention weights (See Fig. 2) trained
as part of our representation learning framework to qualita-
tively evaluate the localized features. Well-trained attention
weights should correctly identify significant image regions
corresponding to a given word. After reshaping and resiz-
ing the attention weights to match the input image size, we

Figure 3. Examples of attention weights for each word piece [’e’,
’ff’, ’usion’] for the word ”Effusion” on different frontal chest ra-
diographs.

overlay the attention map on the original image for visual-
ization. Fig. 2 demonstrates that our attention model is able
correctly identify significant image-regions for key medical
terms.

We also visualize the attention weights trained using
our representation framework without using token aggre-
gation aggregation strategy. Figure 3 show attention maps
for Chest X-rays with visual signals for Effusion. With-
out token aggregation, we can see that the attention weights
are scattered across the different word pieces, resulting in
imprecise and incorrect attentions. Furthermore, from Fig-
ure 3A-E, we can see that the attention weights for effusion
are arbitrarily attributed to different word pieces [”e”, ”ff”,
”usion”]. By applying token aggregation, we obtain rea-
sonably localized attention weights corresponding to each
word as shown in Fig. 2. This strategy also makes the model
easier to learn and leads to better performance on down-
stream tasks as shown in the next section.

5. Ablation Study
We conduct ablation studies using two tasks: (1) image-

text retrieval (Table. 1) and (2) zero-shot classification (Ta-
ble. 2). We use the CheXpert 5x200 dataset for both tasks.
In addition to comparing with different methods from prior
works [4, 5, 16], we perform ablation experiments to inves-



Methods Prec@5 Prec@10 Prec@100
DSVE [4] 40.64 32.77 24.74
VSE++ [5] 44.28 36.81 26.89
ConVIRT [16] 66.98 63.06 49.03
Ablation
RNN Text Encoder 53.88 46.33 34.57
No Token Aggregation 54.48 49.63 38.31
Local Loss Only 51.66 43.40 30.99
Global Loss Only 66.98 63.06 49.03
Freeze Encoders 66.30 61.87 46.83
Similarity Type
Global Similarity Only 67.02 64.68 49.55
Local Similarity Only 68.22 64.58 48.17
GLoRIA 69.24 67.22 53.78

Table 1. Ablation study on image-text retrieval

tigate and understand the proposed approach from multiple
aspects. This includes comparisons for: i) text encoder type
(Sec. 5.4), ii) the use of token aggregation (Sec. 5.6), and iii)
training objectives (Sec. 5.5). For image-text retrieval, we
also discuss the influence from different similarity metrics.
For zero-shot classification, we compare different strategies
for class prompts generation (Sec. 5.2).

5.1. Baselines

We compare GLoRIA to other representation learning
methods in different domains, including medical imag-
ing recognition [16] as well as natural image-caption re-
trieval [4, 5]. Recent state-of-the-art methods are based
on localized representation learning, which often rely on
pretrained object detection models (Bottom-up-attention) to
extract localized images features. We use the same Bottom-
up-attention model [2] pretrained with VisualGenome [10]
on the CheXpert dataset to extract image sub-region fea-
tures. In Figure 4, we show that bounding boxes proposed
by the pretrained object detection model. We can see that
the placement of bounding boxes are fairly similar between
different images. This is not surprising since medical im-
ages have high visual similarity due to standardized proto-
cols and the homogeneous nature of human anatomy. Fur-
thermore, the majority of the bounding boxes are aggre-
gated at the heart or beneath the lung region, which are un-
likely locations for lung abnormalities. This suggests that
using object detection models pretrained on natural images
is not suitable for extracting informative regions of medical
images. Thus, we do not include methods that require pre-
trained object detectors for comparison. Table 1 & 2 show
that GLoRIA outperforms all other representation learning
methods we compare with for both zero-shot classification
and image-text retrieval.

Figure 4. Examples of proposed regions of interested as bound-
ing boxes using Bottom-up-attention pretrained with the Visu-
alGenome dataset.

Methods Acc. Sens. Spec. PPV NPV F1
DSVE [4] 0.27 0.11 0.86 0.16 0.79 0.13
VSE++ [5] 0.31 0.20 0.92 0.38 0.82 0.26
ConVIRT [16] 0.56 0.43 0.90 0.50 0.86 0.46
Ablation
RNN Text Encoder 0.52 0.62 0.85 0.51 0.90 0.56
No Token Aggregation 0.56 0.51 0.91 0.58 0.88 0.54
Local Loss Only 0.48 0.39 0.88 0.45 0.85 0.42
Global Loss Only 0.56 0.43 0.90 0.50 0.86 0.46
Prompt Type
Class Name 0.51 0.68 0.86 0.54 0.91 0.60
Random Sample 0.56 0.54 0.90 0.57 0.89 0.56
GLoRIA 0.61 0.70 0.91 0.65 0.92 0.67

Table 2. Ablation study on zero-shot classification

5.2. Prompt generation

We experiment with different approaches for class
prompts generation (See Fig. 5). The use of text prompts
for each class not only enables zero-shot image classifi-
cation by framing it as an image-text similarity task, but
also helps provide domain knowledge as context for each
class label. This is especially important for medical imag-
ing since different sub-types or severity of an abnormality
can have drastically different visual appearance yet labeled
as the same medical condition. We experiment with the fol-
lowing prompt engineering approaches.

• Class Name: This baseline approach simply repre-
sents each class by its class name as string. For ex-
ample, the category Cardiomegaly is represented as a
string ”Cardiomegaly”.

• Random Sample: For each class we are predicting,
we randomly sample sentences from the reports in the



Figure 5. Methods for generating class prompt. (A) Class names
are simply represented as text. (B) Sentences from the reports with
the same class are sampled from the training dataset. (C) For each
classification category, prompts are generated by combining pos-
sible severity, sub-types and locations for that medical condition
using domain knowledge.

training dataset with the same class label. Predictions
are ensembled from each of the sampled text.

• Generated Prompts: In this setting, we generate
prompts for each class label using medical domain
knowledge. For each abnormality we are predicting,
we consider all possible combinations of severity, ab-
normality sub-types and locations (see Fig. 5). Predic-
tions are based on an ensemble of N randomly gener-
ated prompts.

As shown in Table 1 & 2, generating prompts using do-
main knowledge achieved significantly better predictions as
compared to using class name as text or random sampling.

5.3. Number of class prompts

We generate multiple text prompts for each class during
zero-shot classification as an ensemble strategy. The final
classification results are obtained by taking the average sim-
ilarities between the input image and all prompts within the
same class. Figure 7 shows the performance for both CheX-
pert and RSNA based on different number of class prompts.
We use the CheXpert 5x200 dataset to determine the opti-
mal number of prompts to use. We see that the F1 score
increases with the number of prompt and plateaus after 5
prompts, which indicates that there is a ceiling for perfor-
mance with additional prompts. Therefore, we use 5 text
prompts for our zero-shot classification tasks.

5.4. Text encoder

Many state-of-the-art image-text representation learning
methods use Recurrent Neural Networks (RNNs) as their
text encoder. While RNNs are successful for natural image-
caption datasets with short and precise textual descriptions,
medical reports typically consist of long paragraphs and re-
quire reasoning across multiple sentences. Therefore, we

Figure 6. Zero-shot classification using different number of gener-
ated prompts.

Figure 7. Examples of X-ray and report pairs from the dataset
used in this work.

propose to use a self-attention based model (BERT) as our
text encoder. We find that using self-attention based model
as text encoder outperforms RNN for both tasks (Table 1 &
2).



5.5. Training objective

Our representation learning training objective consists of
two parts, a global contrastive loss L(t|v)

g +L
(v|t)
g and a local

contrastive loss L
(t|v)
l + L

(v|t)
l . When we only use global

contrastive loss to train our representation learning frame-
work, our training objective is exactly the same as Con-
VIRT [16]. Table 1 and 2 show that using both losses leads
to better performance as compared to using either global or
local loss alone.

5.6. Token aggregation

To account for typographical errors and abbreviations
common in medical reports, we use the WordPiece tok-
enizer to tokenize the input text reports. However, as shown
in Fig. 3, this leads to attention weights that scatter across
each word piece when learning localized representations.
Therefore, we use a token aggregation strategy to combine
the features from each word piece for each word. We find
that aggregating tokens lead to a big increase in perfor-
mance, 0.06 increase in F1 score for Zero-shot classifica-
tion (Table 2) and 14.76 Prec@5 improvement for retrieval
(Table 1).
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