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A. Proofs
Theorem 1 With an appropriate setting of learning rate η,

D
{1}
t (x) ≤ η

√
2Lt(x)‖∇wf(x;wt)‖2. (1)

Proof. We apply one-step gradient descent to wt then using
first-order Taylor series,

D
{1}
t (x)

def
= ‖f(x;wt+1)− f(x;wt)‖ (2)
= ‖f(x;wt − η∇wt

Lt(x))− f(x;wt)‖
= ‖f(x;wt)− η∇wf(x;wt)T∇wLt(x)− f(x;wt)‖
= ‖ − η∇wf(x;wt)T∇wLt(x)‖.

Recall that

∇wLt(x) = (y − f(x;wt)) · ∇wf(x;wt). (3)

By substituting Eq. 3 into Eq. 2,

D
{1}
t (x) = η‖(y − f(x;wt)) · ∇wf(x;wt)T∇wf(x;wt)‖

(4)

≤ η‖(y − f(x;wt))‖ · ‖∇wf(x;wt)‖2

= η
√

2Lt(x)‖∇wf(x;wt)‖2.

Corollary 1 With an appropriate setting of learning rate η,

D
{T}
t (x) ≤

√
2η

t+T−1∑
τ=t

(√
Lτ (x)‖∇wf(x;wτ )‖2

)
. (5)

Proof.

D
{T}
t (x)

def
= ‖f(x;wt+T )− f(x;wt)‖ (6)

≤
t+T−1∑
τ=t

‖f(x;wτ+1)− f(x;wτ )‖

≤
√
2η

t+T−1∑
τ=t

(√
Lτ (x)‖∇wf(x;wτ )‖2

)
.

Remark 1 For a linear layer φ(x;W ) with ReLU activa-
tion, the Lipschitz constant L(W ) ≤ ‖x‖.

Proof.

‖φ(x;W + r)− φ(x;W )‖ (7)

= ‖max(0, (W + r)Tx+ b)−max(0,WTx+ b)‖
≤ ‖rTx‖
≤ ‖x‖ · ‖r‖.

Therefore, the Lipschitz constant L(W ) ≤ ‖x‖.

Corollary 2 With appropriate settings of a learning rate η
and a constant C,

D
{T}
t (x) ≤

√
2TηC

√√√√t+T−1∑
τ=t

Lτ (x). (8)

Proof. By substituting ‖∇wf‖2 ≤ C into Corollary 1 then
applying Cauchy–Schwarz inequality, we have

D
{T}
t (x) ≤

√
2ηC

t+T−1∑
τ=t

√
Lτ (x) (9)

≤
√
2TηC

√√√√t+T−1∑
τ=t

Lτ (x).

B. Experimental Details
B.1. Image Classification

Datasets We evaluate the active learning methods on four
common image classification datasets, including Cifar-10
[5], Cifar-100 [5], SVHN [6], and Caltech-101 [2]. CIFAR-
10 and CIFAR-100 consist of 50,000 training images and
10,000 testing images with the size of 32×32. CIFAR-
10 has 10 categories and CIFAR-100 has 100 categories.
SVHN consists of 73,257 training images and 26,032 test-
ing images with the size of 32×32. SVHN has 10 classes
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Table 1. The summary of datasets used in the experiments. ‘#classes’ and ‘image size’ are characters after pre-processing. ‘image size’ is
the size of images used for training.

dataset task content #classes image size train val test
Cifar-10 image classification natural images 10 32×32 45,000 5,000 10,000
Cifar-100 image classification natural images 100 32×32 45,000 5,000 10,000
SVHN image classification street view house numbers 10 32×32 65,931 7,326 26,032
Caltech-101 image classification natural images 101 224×224 7,316 915 915
Cityscapes semantic segmentation driving video frames 19 688×688 2,675 300 500

Table 2. The summary of implementation details on each dataset. ‘start’ is the number of initially labeled samples and ‘budget’ is the
number of newly annotated samples in each cycle. ‘cycle’ is the number of active learning cycles. α is the EMA decay rate and λ is the
weight for unsupervised loss.

dataset start budget cycle optimizer lr momentum decay epochs batch α λ

Cifar-10 10% 5% 7 SGD 0.1 0.9 5×10−4 200 128 0.999 0.05
Cifar-100 10% 5% 7 SGD 0.1 0.9 5×10−4 200 128 0.999 0.05
SVHN 10% 5% 7 SGD 0.1 0.9 5×10−4 200 128 0.999 0.05
Caltech-101 10% 5% 7 SGD 0.01 0.9 5×10−4 50 64 0.999 0.05
Cityscapes 10% 5% 7 Adam 5×10−4 - - 40 4 0.999 0.05

of digit numbers from ‘0’ to ‘9’. For training on Cifar-10,
Cifar-100, and SVHN, we randomly crop 32×32 images
from the 36×36 zero-padded images. Caltech-101 consists
of 9,146 images with the size of 300×200. Caltech-101 has
101 semantic categories as well as a background category
that there are about 40 to 800 images per category. By fol-
lowing [9] we use 90% of the images for training and 10%
of the images for testing. On Caltech-101, we resize the
images to 256×256 and crop 224×224 images at the cen-
ter. Random horizontal flip and normalization are applied
to all the image classification datasets. We summarize the
details of the datasets in Table 1.

Implementation details We employ ResNet-18 [3] as the
image classification model. On all the image classification
datasets, the labeling ratio of each active learning cycle is
10%, 15%, 20%, 25%, 30%, 35%, and 40%, respectively.
In an cycle, The model is learned for 200 epochs using an
SGD optimizer with a learning rate of 0.1, a momentum of
0.9, a weight decay of 5×10−4, and a batch size of 128. Af-
ter 80% of the training epochs, the learning rate is decreased
to 0.01. We summarize the implementation details in Table
2.

B.2. Semantic Segmentation

Dataset We evaluate the active learning methods for
semantic segmentation on the Cityscapes dataset [1].
Cityscapes is a large scale driving video dataset collected
from urban street scenes of 50 cities. It consists of 2,975
training images and 500 testing images with the size of
2048×1024. By following [7], we convert the dataset from
the original 30 classes into 19 classes. We crop 688×688
images from the original images for training. Random hor-

izontal flip and normalization are applied to the images.

Implementation details we employ the 22-layer dilated
residual network (DRN-D-22) [8] as the semantic segmen-
tation model. The labeling ratio of each active learning cy-
cle is 10%, 15%, 20%, 25%, 30%, 35%, and 40%, respec-
tively. In an cycle, the model is learned for 40 epochs using
an Adam optimizer [4] with a learning rate of 5×10−4 and
a batch size of 4.

C. More Experimental Results
C.1. Study on Hyper-Parameters

The unsupervised learning plays a vital role in training
the task model in active learning. Here we further inves-
tigate the hyper-parameter selection for our proposed un-
supervised learning method. The hyper-parameters include
the unsupervised loss weight λ and the EMA decay rate α.
We conduct empirical studies using our full active learning
pipeline on Cifar-100 dataset to investigate the performance
variation with different λ and α. Fig. 1 shows the results on
labeling budgets of 10%, 20%, 30%, 40%, respectively. In
most of the cases, λ = 0.05 and α = 0.999 achieve the best
performance. Therefore, we adopt λ = 0.05 and α = 0.999
for all the experiments in this paper, wherever EMA is in-
volved.

C.2. Evaluating Active Data Selection Strategies

As a supplementary to Section 5.2 of the paper, we com-
prehensively compare the active data selection strategies by
training the task model with and without the unsupervised
loss, respectively. Fig. 2 shows that our method achieves
superior performances on most of the datasets and settings
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Figure 1. Empirical study on unsupervised loss weight λ and EMA decay rate α. The study is conducted on Cifar-100 with 10%, 20%,
30%, and 40% of labeled images, respectively. λ = 0.05 and α = 0.999 achieve the best performances.
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Figure 2. The performance of benchmark active learning methods trained without (top) and with (bottom) the unsupervised loss on three
datasets.

(either with or without unsupervised loss), demonstrating
its effectiveness in active data selection.

C.3. TOD with Different Gradient Descent Steps

Fig. 3 shows the loss estimation performances of TOD
using different numbers of gradient descent (GD) steps.
More GD steps may bring a better loss estimation perfor-
mance especially when there are fewer sampling images.
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Figure 3. The effects of number of GD steps used in TOD.
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