Supplementary Material for
Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds

Siyuan Huang!*, Yichen Xie?*, Song-Chun Zhu**5, Yixin Zhu3*
! University of California, Los Angeles ? Shanghai Jiao Tong University
3 Beijing Institute for General Artificial Intelligence * Peking University ° Tsinghua University
https://siyuanhuang.com/STRL

1. Experimental Details

In this section, we describe additional details about
network architectures (Sect. 1.1) and training methods
(Sect. 1.2).

1.1. Network Architecture of STRL

As shown in Fig. 2 in the main text, the proposed spatio-
temporal representation learning (STRL) framework con-
sists of three components: online network, target network,
and predictor. Online and target networks are both com-
posed of an encoder and a projector. The encoders fol-
low different backbone architectures with minimal modifi-
cations, detailed in Sect. 1.2. Below, we clarify the structure
of the projector and predictor.

Projector The projector contains two fully connected
(FC) layer with output size hidden size s, and projection
size sp, respectively. A batch normalization and a ReLU ac-
tivation layer are inserted between the two FC layers. The
input of the first FC layer is the encoder’s output, whose
dimension differs on the basis of downstream tasks.

Predictor The predictor has a similar structure to the
projector. It also consists of two FC layers with an output
size of s; and s,, respectively. The batch normalization
layer and ReL.U activation layer are structured in the same
fashion as the ones in the projector. The projector’s output
of the target network serves as the predictor’s input.

We follow [2] to set the hyper-parameters s, = 4096
and s, = 256.

1.2. Training Details

Below, we specify the training details for each down-
stream tasks described in the main text, including shape
classification, semantic segmentation, and indoor/outdoor
object detection. For all downstream tasks, we adopt Adam
optimizer [3] and LARS wrapper [8].

* indicates equal contribution.

1.2.1 Shape Classification

Backbone We adopt two practical backbones—
PointNet [5] and DGCNN [7]—for shape classification
task. We extract the global feature after the last max-pooling
layer as the encoder output.

Linear Classification During pre-training on
ShapeNet, we set the learning rate as 0.001 with a
cosine decay. For PointNet, we train the model with a batch
size of 48 for 50 epochs. For DGCNN, we train the model
with a batch size of 32 for 100 epochs. Afterward, we fit a
linear Support Vector Machine (SVM) on the representation
of the ModelNet training set and evaluate it on the test set.
The linear SVM has the default parameters of C' = 1.0 and
tol = le — 3. For both models, we randomly select 2,048
points for each shape in both pre-training and training.

Supervised Fine-tuning In the pre-training process,
we set the learning rate as 0.001 with a cosine decay. Only
the DGCNN model is utilized in this task; we pre-train it on
ShapeNet with a batch size of 32 for 100 epochs. During the
fine-tuning process, we follow all the parameters in [7] ex-
cept reducing the training epoch from 250 to 125 since our
pre-trained weight helps to accelerate the supervised train-
ing. For pre-training and fine-tuning, we select 1,024 points
for each shape.

1.3. Semantic Segmentation

We adopt the DGCNN network as the backbone. Like
shape classification, we extract the 1024-d embedding after
the last max-pooling layer as the encoder’s output.

We pre-train the network on processed ScanNet dataset
for 100 epochs with a batch size of 28, setting the learning
rate as 0.001 with a cosine decay. We extract a key frame
per 10 frames and select a window size of 10 key frames
when choosing adjacent frames.

When fine-tuning the pre-trained model, we follow the
settings in [7] to train the model on each area of the S3DIS
dataset for 100 epochs. We use the SGD optimizer with a
learning rate of 0.1 (cosine decay) and a batch size of 32.
We randomly select 4,096 points for each frame during pre-

https://siyuanhuang.com/STRL

training and each block during fine-tuning.

1.4. Indoor 3D Object Detection

Backbone We adopt the VoteNet model with Point-
Net++ backbone. By adding a max-pooling layer at the end
of the backbone, we obtain a global feature of 256-d em-
bedding with the encoder, which is further passed into the
projector.

Training Parameter Same as semantic segmentation,
we extract a key frame every 10 frames to process the Scan-
Net dataset for pre-training. Next, a window size of 10 key
frames is chosen to find adjacent frames. We use a learn-
ing rate of 0.001 with a batch size of 32 for 100 epochs in
the pre-training process. When fine-tuning the pre-trained
model, we follow the settings in [4] to train the model for
180 epochs. The learning rate is set as 0.001 and decayed by
0.1 at the step of 80, 120, 160. We use a batch size of 8. In
both processes of pre-training and fine-tuning, we randomly
select 20,000 points for each scene.

1.5. Outdoor 3D Object Detection

Backbone The PV-RCNN model is adopted in this
task, together with the Sparse Convolution backbone. Ad-
ditionally, we also add a max-pooling layer at the end of the
backbone. A 128-d global feature is obtained as the output
of the encoder.

Training Parameter We pre-train the model on KITTI
raw data with a learning rate of 0.004 (cosine decay) and a
batch size of 32 for 50 epochs. We sub-sample the point
cloud frames per second as key frames and use a window
size of 5 key frames. In the fine-tuning process, we keep the
same settings as in [6]. We train the model with a learning
rate of 0.01 for 80 epochs on the KITTI object detection
benchmark training set. Since the input is voxelized in both
pre-training and fine-tuning, we pass all points to the model
without random sampling.

2. Generalizability Analysis

In Sect. 5.3 of the main text, we have described some
cross-domain experiments to analyze the generalizability of
pre-training between synthetic shapes and natural scenes.
Here, we supplement an extra experiment to transfer the
ShapeNet pre-trained DGCNN model to the 3D semantic
segmentation task. We follow the setting in Sect. 5.2.2 of
the main text to fine-tune the pre-trained model on one of
Area 1-5 of S3DIS dataset each time and evaluate the model
on Area 6. Table | summarizes the main results.

Consistent with the conclusion detailed in Sect. 5.3 of
the main text, the DGCNN model, pre-trained on ShapeNet,
achieves comparable performance set by the ScanNet pre-
trained ones, which echoes our hypothesis mentioned in
the main text: The model benefits from more diverse and

cleaner shapes in ShapeNet to master basic spatial struc-
tures. These learned low-level knowledge help boost per-
formance in downstream tasks, despite these downstream
tasks being carried out on more complicated scenes.

Table 1: Ablation Study: Cross-domain Generalizability.
We transfer the ShapeNet pre-trained DGCNN model to the
3D semantic segmentation task on S3DIS.

Method Acc. mloU

from scratch 84.57% 57.85
Area 1 (3687 samples) STRL (ScanNet) 85.28% 59.15
STRL (ShapeNet) 84.85% 59.11

from scratch 70.56% 38.86
Area 2 (4440 samples) STRL (ScanNet) 72.37% 39.21
STRL (ShapeNet) 70.45% 38.66

from scratch 77.68% 49.49
Area 3 (1650 samples) STRL (ScanNet) 79.12% 51.88
STRL (ShapeNet) 78.96% 51.03

from scratch 73.55% 38.50
Area 4 (3662 samples) STRL (ScanNet) 73.81% 39.28
STRL (ShapeNet) 74.42% 40.58

from scratch 76.85% 48.63
Area 5 (6852 samples) STRL (ScanNet) 77.28% 49.53
STRL (ShapeNet) 78.53% 50.55

Fine-tuning Area

3. Representation Robustness

We disturb the input of the ModelNet4(0 data and ap-
ply the linear SVM on the representations extracted by Pre-
trained. The results with different disturbances: (1) Cutout:
86.91; (2) Crop: 74.59; (3) Jitter the points: 87.97; (4) Add
noisy points: 82.33.

4. Alternative Framework

We design our STRL framework based on [2]. In com-
parison, our spatio-temporal self-supervised representation
learning can also well fit other contrastive methods. Below,
we present results by adopting an alternative framework—
SimCLR [!]—on the linear shape classification tasks with
PointNet backbone. This task is representative as it can di-
rectly reflect the efficacy of learned representations. We ex-
perimented with different batch sizes during pre-training.
Table 2 tabulates main results. It reveals that a compara-
ble performance (0.1% - 0.5% performance drop) is also
reached with SimCLR framework, shown the compatibil-
ity of our proposed STRL. We also find that our method is
stable on different batch sizes in the range between 32 and
1024 and achieve the best performance between 64 and 512.

Table 2: Alternative Frameworks: SimCLR v.s. BYOL.
We pre-train the PointNet model separately with SimCLR
and BYOL framework. The results are evaluated with a lin-
ear SVM classifier on the ModelNet40 dataset. We pre-train
the model with different batch sizes.

Different batch sizes during pre-training
32 48 64 128 256 512 1024

BYOL 88.0% 88.1% 88.4% 882% 88.1% 88.4% 871.8%
SimCLR 87.9% 87.9% 88.1% 88.0% 87.6% 88.2% 87.6%

Framework

References

(1]

(2]

(3]

(4]

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. arXiv preprint arXiv:2002.05709,
2020. 2

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre H Richemond, Elena Buchatskaya, Carl Do-
ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, et al. Bootstrap your own latent: A
new approach to self-supervised learning. arXiv preprint
arXiv:2006.07733,2020. 1, 2

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1

Charles R Qi, Or Litany, Kaiming He, and Leonidas J Guibas.
Deep hough voting for 3d object detection in point clouds. In
Proceedings of International Conference on Computer Vision

(5]

(6]

(7]

(8]

(ICCV),2019. 2

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification and
segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017. 1
Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping
Shi, Xiaogang Wang, and Hongsheng Li. Pv-rcnn: Point-voxel
feature set abstraction for 3d object detection. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. 2

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
on Graphics (TOG), 38(5):1-12, 2019. 1

Yang You, Igor Gitman, and Boris Ginsburg. Scaling sgd
batch size to 32k for imagenet training. arXiv preprint
arXiv:1708.03888, 2017. 1

