
Trash to Treasure: Harvesting OOD Data with Cross-Modal Matching
for Open-Set Semi-Supervised Learning

– Supplementary Material

Junkai Huang1* Chaowei Fang2* Weikai Chen3 Zhenhua Chai4

Xiaolin Wei4 Pengxu Wei1 Liang Lin1 Guanbin Li1†

1Sun Yat-sen University 2Xidian University 3Tencent America 4Meituan

1. Supplementary Ablation Study

1.1. Incorporation with Other SSL Methods

Various variants of our method can be devised via replac-
ing UDA with other SSL methods. The performance of inte-
grating existing SSL algorithms including self-labeling [4],
mean teacher [6], and MixMatch [1] into our proposed
framework is presented in Table 1. Here, CIFAR-10 and
TIN is regarded as the ID and OOD dataset respectively and
1000 labels are used during training. Our method can con-
sistently improve the three SSL algorithms. This demon-
strates our method can be easily integrated with various SSL
algorithms.

Methods Self-labeling [4] Mean Teacher [6] MixMatch [1]

Baseline 62.60 72.39 88.03
Ours 82.51 84.74 92.17

Table 1: Performance of incorporating our proposed
method with different SSL methods.

1.2. Training with Different Sampling Strategies

As shown in Table 2, we validate the efficacy of our de-
vised sampling strategy for training the cross-modal match-
ing branch on various ID and OOD datasets. 50 labels are
used in every category of all datasets during training. We
find that using the hard sample only contributes to better
OOD detection performance than using the simple sample
only, since discriminating hard samples is more challeng-
ing and requires the learned features to be more expressive,
compared to learning the simple samples. The combination
of hard and simple samples brings a significant performance
improvement in OOD detection, in contrast to only using
the hard/simple training sample.

*Equal contribution.
†Corresponding author.

ID OOD
hard
only

simple
only

hard +
simple

Animals-10 TIN 90.32 88.79 93.51
CIFAR-ID-50 TIN 83.98 77.23 99.85
CIFAR-ID-50 CIFAR-50 70.07 65.81 74.13

TIN-ID-50 TIN-150 63.78 61.89 65.67

Table 2: The OOD detection performance of using different
sampling strategies when training the cross-modal matching
branch. AUROC(%) is used as the metric for measuring
OOD detection performance.

1.3. Using Different Network Backbones

To verify whether our method is sensitive to the network
backbone, we implement variants of our method via adopt-
ing VGG13 [5], ResNet18 [2], or PreAct-ResNet18 [3] as
the visual feature extraction backbone. The comparisons
between our method and the baseline method, UDA [7], are
presented in Table 3. In all experiments, we use CIFAR-10
as the in-distribution dataset, and regard TIN/LSUN as the
out-of-distribution dataset. 25 labeled samples are provided
for each class. Our method can outperform UDA signifi-
cantly on all network backbones.

Backbone TIN LSUN

UDA Ours UDA Ours

VGG13 [5] 88.04 90.43 87.42 90.31
ResNet18 [2] 88.59 90.72 88.70 90.04

PreAct-ResNet18 [3] 87.73 90.61 87.28 90.56

Table 3: Performance of incorporating our proposed
method with different network backbones.



1.4. Influence of Length of OOD Filtering Cycle

The crossmodal matching head is used to periodically
update the unlabeled training data. We test extensive OOD
filtering cycle lengths {104, 2×104, 4×104, 105, 2×105}
to analyze the efficacy of our method under different data
update frequencies. In all experiments, we use the same
ID and OOD dataset settings as in Section 1.3. The ex-
perimental results are shown in Table 4. We can see that
shortening the filtering period to as low as 2 × 104 iter-
ations, namely updating the unlabeled training data more
frequently, gives rise to continuous improvements in the ac-
curacy of our method. However, the overly frequent update
makes the model formidable to adapt to data variation, re-
sulting in performance decay.

OOD
Dataset

Cycle Length (104)

1 2 4 10 20

TIN 90.26 91.52 89.34 86.93 85.66
LSUN 89.78 91.13 88.17 86.51 84.79

Table 4: Influence of Length of OOD Filtering Cycle.

1.5. Dimension of Class Embedding

In the cross-modal matching branch, we transform the
one-hot vector of a class label into a d-dimensional class
embedding vector. In order to test the sensitivity of different
dimensions d to the performance of the algorithm, we set d
to 64, 128, 256, and 512 respectively, and report the OOD
detection performance under different class embedding di-
mensions in Table 5. Here, CIFAR-10 or CIFAR-ID-50 is
selected as ID data, and TIN is regarded as OOD data. 250
and 2500 labeled images are for CIFAR-10 and CIFAR-ID-
50, respectively. As shown in Table 5, our method performs
well on the OOD detection for all dimension settings, indi-
cating that our approach is not sensitive to the dimension of
class embedding.

Dataset Dimension

64 128 256 512

CIFAR-10 99.93 99.97 99.95 99.97
CIFAR-ID-50 99.89 99.85 99.86 99.91

Table 5: Dimension selection of class embedding. AU-
ROC(%) is used as the metric for measuring OOD detection
performance.

2. Supplementary Training Algorithms
The training process consists of two stages. In the first

stage, we take a warming up training of the complete ar-

chitecture with loss function L = Lce + Ll
cm + Lrot. In

the second stage, the cross-modal matching head is used
to periodically update unlabeled data. To further improve
the performance of the category prediction branch and the
cross-modal matching branch, consistency constraint and
entropy minimization are adopted, respectively. The final
loss function is thus L = Lce + Ll

cm + Lu
cm + Lrot + Lcc.

The calculation functions of Lce and Lcc are described in
Algorithm 1. The loss function of the rotation prediction
is presented in Algorithm 2. The calculation procedures of
Ll
cm and Lu

cm are illustrated in Algorithm 3. We introduce
the dataset updating process in Algorithm 4. The processes
of the two training stages are summarized in Algorithm 5
and 6, respectively.

Algorithm 1: Functions of computing losses, Lce

and Lcc, for the category prediction task. x, y, θ,
and ωc indicates the input image, the category label,
parameters of the backbone and classification head,
respectively.

Function loss ce(x, y, θ, ωc):
f ← gθ(x); p← hωc

(f);
return − ln(p[y]), f , p;

Function loss cc(x, θ, ωc):
f ← gθ(x); p← hωc

(f);
Strongly augment x, resulting to x̃;
p̃← hωc(gθ(x̃))

return
∑K

j=1 p[j] ln(
p[j]
p̃[j] ), f , p;

Function loss ce cc(x, y, θ, ωc):
f ← gθ(x); p← hωc

(f);
Strongly augment x, resulting to x̃;
p̃← hωc(gθ(x̃))

return − ln(p[y]),
∑K

j=1 p[j] ln(
p[j]
p̃[j] ), f , p;

Algorithm 2: Function of computing loss for the
rotation prediction task, Lrot. ωr represents the pa-
rameters of the rotation prediction head.

Function loss rot(x, θ, ωr):
L← 0
for j ← 1 to 4 do

Rotate xi by (j − 1) ∗ 90◦, resulting to xi,j ;
qi,j ← hwr

(gθ(xi,j));
L← L− ln(qi,j [j]);

end
return L/4.



Algorithm 3: Functions of calculating loss for the cross-modal matching task. loss cm labeled and
loss cm unlabeled is used for calculating losses of labeled and unlabeled samples, Ll

cm and Lu
cm, respectively.

f , y, and p indicates the feature representation , category label , and the predicted probability vector of a training
sample, respectively. ϕ and ωm represent the parameters of the cross-modal matching branch.

Function loss cm labeled(f , y, p, ϕ, ωm):
s← hωm

(f , gϕ(y));
ȳh ← argmaxk ̸=y p[k];
s̄h ← hωm(f , gϕ(ȳ

h));
ȳs ← rand({k ∈ [1,K] | k ̸= y; k ̸= ȳh});
s̄s ← hωm

(f , gϕ(ȳ
s));

return − ln(s)− ln(1− s̄h)− ln(1− s̄s);
Function loss cm unlabeled(f , p, ϕ, ωm):

y ← argmaxk p[k];
s← hωm

(f , gϕ(y));
ȳ ← rand({k ∈ [1,K] | k ̸= y});
s̄← hωm(f , gϕ(ȳ));
return −s ln(s)− (1− s) ln(1− s)− s̄ ln(s̄)− (1− s̄) ln(1− s̄);

Algorithm 4: Function of filtering samples. D represents a set of unlabeled images.

Function sample filtering(D, θ, ϕ, ωc, ωm):
foreach xi ∈ D do

fi ← gθ(xi); pi ← hωc
(fi);

yi ← argmaxk pi[k]; si ← hωm
(fi, gϕ(yi));

end
Obtain the Otsu thresholding τ from {si};
D′ ← ∅
foreach xi ∈ D do

if si > τ then
Push xi into D′;

end
return D′;

References
[1] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas

Papernot, Avital Oliver, and Colin A Raffel. Mixmatch: A
holistic approach to semi-supervised learning. In Advances
in Neural Information Processing Systems, pages 5049–5059,
2019. 1

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016. 1

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In Proceedings
of the European Conference on Computer Vision, pages 630–
645. Springer, 2016. 1

[4] Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-
supervised learning method for deep neural networks. In
Workshop on Challenges in Representation Learning, ICML,
volume 3, 2013. 1

[5] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 1
[6] Antti Tarvainen and Harri Valpola. Mean teachers are bet-

ter role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. In Advances in Neural
Information Processing Systems, 2017. 1

[7] Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and
Quoc Le. Unsupervised data augmentation for consistency
training. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Bal-
can, and H. Lin, editors, Advances in Neural Information Pro-
cessing Systems, volume 33, pages 6256–6268. Curran Asso-
ciates, Inc., 2020. 1



Algorithm 5: Algorithm for network warming up.

Input: Training dataset,
{
(xl

i, y
l
i)
}N

i=1
, {xu

i }
M
i=1.

Output: Optimized network parameters, θ, ϕ, ωc, ωm, ωr.
Randomly initialize network parameters.
repeat

Fetch a batch of labeled samples Bl = {(xl
i, y

l
i)}ni=1 and a batch of unlabeled samples Bu = {xu

i }mi=1;
Lsup ← 0; Ll

cm ← 0;
for i← 1 to n do

Li
ce, f li , pl

i ← loss ce(xl
i, y

l
i, θ, ωc);

Lce ← Lce + Li
ce;

Ll
cm ← Ll

cm + loss cm labeled(f li , yli, p
l
i, ϕ, ωm);

end
Lrot ←

∑n
i=1 loss rot(xl

i, θ, ωr) +
∑m

i=1 loss rot(xu
i , θ, ωr);

L← Lce+Ll
cm

n + Lrot

n+m ; Use SGD to update network parameters θ, ϕ, ωc, ωm, ωr;
until network parameters get converged;

Algorithm 6: Algorithm for training network in the second stage.

Input: Training dataset, Dl =
{
(xl

i, y
l
i)
}N

i=1
, Du = {xu

i }
M
i=1.

Output: Optimized network parameters, θ, ϕ, ωc, ωm, ωr.
repeat

if do OOD filtering then
Du ← sample filtering(Du, θ, ϕ, ωc, ωm)

Fetch a batch of labeled samples Bl = {(xl
i, y

l
i)}ni=1 and a batch of unlabeled samples Bu = {xu

i }mi=1;
Lce ← 0; Ll

cm ← 0; Lu
cm ← 0; Lcc ← 0;

for i← 1 to n do
Li
ce, Li

cc, f li , pl
i ← loss ce cc(xl

i, y
l
i, θ, ωc);

Lce ← Lce + Li
ce; Lcc ← Lcc + Li

cc;
Ll
cm ← Ll

cm + loss cm labeled(f li , yli, p
l
i, ϕ, ωm);

end
for i← 1 to m do

Li
cc, fui , pu

i ← loss cc(xu
i , θ, ωc);

Lcc ← Lcc + Li
cc;

Lu
cm ← Lu

cm + loss cm unlabeled(fui ,p
u
i , ϕ, ωm);

end
Lrot ←

∑n
i=1 loss rot(xl

i, θ, ωr) +
∑m

i=1 loss rot(xu
i , θ, ωr);

L← Lce+Ll
cm

n +
Lu

cm

m + Lcc+Lrot

n+m ;
Use SGD to update network parameters θ, ϕ, ωc, ωm, ωr;

until network parameters get converged;


