Pose Correction for Highly Accurate Visual Localization
in Large-scale Indoor Spaces

Supplementary material

In this supplementary material, we describe more details
of each method explained in Section 3.4 Extended pose cor-
rection in the main paper. Finally, we show results of ex-
periments performed on a large-scale outdoor dataset, the
RobotCar Seasons dataset [8].

A. Extended Pose Correction
A.l. Divided matching

Divided matching finds feature matches in left, right, top,
and bottom halves side of an image, and the original image
(e.g. Figure 1(a)). The identified matches are concatenated
for use in the PnP algorithm [5] inside the RANSAC loop
[3] to correct the pose from X~ to X T.

A.2. Inter-pose matching

Inter-pose matching utilizes a multiple local feature map,
F;, to find feature matches using SuperGlue [7]. To use
F; from a different view, we first find connected positions
using the Scangraph. For example, let us assume p; is a
retrieved image’s position, and p; and pj, are the connected
positions in the Scangraph (c.f. Figure 1(b)). We project
each set of local features in IF;, IF;, and Fj, onto the image
plane of X ~ to generate synthetic local feature images (e.g.
I, I;, and I}). This enables generation of synthetic local
feature images from different views. Finally, we find feature
matches using each synthetic local feature image with the
query image. The identified matches are concatenated and
the PnP algorithm in the RANSAC loop follows to correct
the pose from X~ to X .

In indoor spaces, the distance to the scene geometry
tends to be short. Thus, concave structures or clutters that
cause occlusion often have a stronger effect than outdoor
spaces. In these places, even the best scanned position in the
database, p;, used for pose estimation may not be sufficient
to cover an arbitrary query’s view. Inter-pose matching may
help in finding more correct feature matches and enhancing
localization accuracy.

A.3. Filtering process

Ideally, it is best to select only the visible features when
generating synthetic local feature images. For this, we pro-
posed two filtering approaches.

One is point normal filtering that removes invisible local
features in the inference time. We utilize surface normal di-
rections to select visible features. We first generate a local
feature map (E) that contains the normal direction of local
features. When projecting the local features onto synthetic
local feature images, we select visible features using these
IF; by computing cosine distance between the direction vec-
tor and the corresponding normal, as shown in Figure 1(c).
This cosine distance allows filtering of the occluded local
features that face the opposite directions.

The other is the virtual local feature (VLF) map that ex-
tends the database with more virtual positions. A virtual po-
sition is set for every edge in the Scangraph. For example,
if p; and p; are connected in the Scangraph, a virtual posi-
tion, p; is obtained by scoring samples from circular grid,
where p; and p; form diameter of the circle. A candidate
that can observe the most even and numerous local features
extracted from the two adjacent positions shows the high-
est score and is selected as a virtual position pj. Since the
possible candidates of a virtual position between the two ad-
jacent locations are infinite, the highest score in the samples
can guarantee only a suboptimal position depending on the
grid size. Figure 2 shows the obtained virtual positions.

At the virtual position pj, we perform the hidden point
removal (HPR) algorithm [4] to find visible local features
from the entire local feature map F, and create a correspond-
ing VLF map . While point clouds corresponding to local
features in the database are sparse, the HPR algorithm re-
quires dense point clouds for accurate filtering. To make
dense point clouds and yield an accurate filtered output, we
merge the point clouds of local features and the original
point clouds scanned by sensor before the HPR algorithm.
After the HPR algorithm has been conducted, we acquire
local features visible from p; and make ).

In the pose correction step, we create synthetic local fea-
ture images by projecting F; and [F; similar to inter-pose
matching, as shown in Figure 1(d). Note that virtual po-
sitions make the database denser, which is beneficial for
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(b) Inter-pose matching

(c) Point normal filtering

(d) Virtual local feature map

Figure 1. (a) An example illustrating divided matching focusing on the local features in the right side of the images. (b) This example
illustrates a retrieved image’s position p;, and positions p; and pi connected to p; in the Scangraph that are used for inter-pose matching
from top view. Each colored region and cross represent the area covered by the scanned position and local feature’s corresponding point
in 3D space, respectively. Each set of local features in the same color is used for finding feature matches with query’s local features using
SuperGlue. (c) Local features that have point normal directions opposite to the X ~ are considered invisible features and removed before
projection onto the image plane X ~. (d) Local features (green crosses) in a virtual local feature map IF; at the virtual position p; are
projected on the image plane to generate a synthetic local feature image. Both sets of local features (green and blue crosses) are used in
the same way as inter-pose matching.

(b)
From 277 distinct
scanned positions (blue dots), 638 virtual positions (red dots) are
generated in InLoc dataset. (a) Top view of DUCI1. (b) Top view
of DUC2.

Figure 2. Locations of virtual positions.

finding a position that shares a similar view to an arbitrary
query’s view. In addition, the VLF map removes local fea-
tures that are invisible from p; ahead of the inference time
(i.e. database construction time), which reduces the chances
of invisible local features to be projected on I’ during the in-
ference time.

B. Outdoor Dataset

We evaluate our method with a large-scale outdoor
dataset, the RobotCar Seasons dataset [8], in which the
view-difference problem is not significant because database
and query images are captured along vehicle trajectory. We
used a coarse-to-fine method [6] for comparison, which
uses NetVLAD [1] for global retrieval and SuperPoint [2]
for local features. The basic pose correction module is then
applied to on the output of the method to determine whether
the pose correction enhances the accuracy. Note that the PV

day all night all
Error [m/deg] |0.25/2 0.5/5 5.0/10|0.25/2 0.5/5 5.0/10
NVLD+SP[6] | 53.0 793 950 | 59 17.1 294
NVLD+SP+PC | 53.8 793 951 | 69 19.8 295

Table 1. Evaluation results for the RobotCar Seasons dataset.
NVLD, SP, and PC denote NetVLAD, SuperPoint, and pose cor-
rection, respectively.

step is excluded in the outdoor experiments, similar to the
method for comparison [6].

As presented in Table 1, the performance gain using the
pose correction was not significant compared to the exper-
iments in large-scale indoor datasets. This is because the
view-difference problem is not significant for the trajectory-
based outdoor dataset compared to the indoor datasets. In
other words, the pose correction module can help in en-
hancing localization accuracy especially when the sparsity
of image positions inheres in the database, i.e. large-scale
indoor spaces.
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