RePOSE: Fast 6D Object Pose Refinement via Deep Texture Rendering
Supplementary Material

Shun Iwase!

Xingyu Liu®

Rawal Khirodkar!

Rio Yokota?

Kris M. Kitani!

!Carnegie Mellon University

1. Implementation Details

RePOSE uses the initial estimated pose of PVNet on
the LineMOD and Occlusion LineMOD dataset, and of
PoseCNN on the YCB-Video dataset. PoseCNN has VGG-
16 [7] as the backbone network. However, since RePOSE
reuses the deep feature from PoseCNN, its slow runtime of
VGG-16 can be problematic in the case of tracking. Instead,
we use ResNet-18 as the backbone network of PoseCNN.
RePOSE makes use of the deep feature from ResNet-18,
however, we still rely on the initial pose of the original
PoseCNN with VGG-16. For tracking, the U-Net decoder
of RePOSE also outputs the segmentation mask and use it
as an additional signal to detect whether an object is lost
or not. RePOSE learns its parameters separately per ob-
ject on the LineMOD and Occlusion LineMOD dataset. In
contrast to that, RePOSE learns the parameters for all the
objects simultaneously on the YCB-Video dataset. We use
pvnet-rendering! to generate synthetic images. How-
ever, we may be able to improve accuracy if images gener-
ated by photorealistic rendering are used for training. The
neural textures, which are the outputs of the MLP that takes
learnable parameters as input (ref. Fig.1 of the main paper),
are trained along with the MLP and input learnable param-
eters.

2. Derivation of Camera Jacobian Matrix

Notation: R € SO(3) denotes a rotation matrix, t € R3
denotes a translation vector, w € so(3) denotes a rotation
vector, P = (w t) € RS is a pose representation using a
rotation and translation vector, f; and f, are focal lengths,
p, and p,, are the principal point offsets, X and x denote
a homogeneous and inhomogeneous 2D image coordinate,
subscript w, ¢ denotes a coordinate is defined in the world,
and camera coordinate system respectively, and Id € R3*3
is an 3 x 3 identity matrix. R and w represents the same
rotation.

Uhttps://github.com/zju3dv/pvnet-rendering

2Tokyo Institute of Technology

Derivation: Jacobian matrix J of the objective function
with respect to a pose P is required to perform deep feature-

based pose optimization. We show the detailed derivation
of a camera jacobian matrix g—l’; at each pixel in Equation

9. The camera jacobian matrix can be decomposed more as
follows;

OR 0x
Ow R
g% — w c RGXQ (1)
0x
ot

Using the derivative calculation method of a rotation matrix
with respect to a rotation vector proposed in [2], the follow-
ing equation is acquired.

R <8R IR 6R>T
ow \dw; Ows Ows
wi[w]x + [w x (Id — R)eq],,
vec 5
[[wl
e wa[W]x + [W X (21d —R)ey, c R3O
[[wl
wy[w]x + [w x (Id — R)es],,
vec 5
[[wl
2

where vec is a vectorize operation, [X]x is a conversion from
a 3-d vector to a skew-symmetric matrix, e; is a ith 3-d
basis vector. R is regarded as a 9-d vector for simplicity. A
camera and image coordinate x. and x can be calculated as
follows;

X.=Rx, +t 3)
I:L.C
fZ + Pz
X = c 4
fyyc +py

Zc

Table 1: Comparison of the median of absolute angular and relative translation error on the LindMOD dataset [3]. We do not
report the rotation error of symmetric objects (eggbox, and glue) because of its non-unique rotation representation.

Object PVNet [6] CNN w/ FW Ours w/ FW Ours
Rotation Translation | Rotation Translation | Rotation Translation | Rotation Translation

Ape 2.213° 0.119 1.849° 0.069 1.446° 0.055 1.197° 0.051
Benchvise 1.030° 0.022 0.857° 0.022 0.644° 0.014 0.757° 0.010
Cam 1.183° 0.045 0.896° 0.030 1.322° 0.073 0.713° 0.023
Can 0.958° 0.032 1.238° 0.033 0.995° 0.040 0.674° 0.017
Cat 1.260° 0.050 1.177° 0.041 0.941° 0.036 0.857° 0.035
Driller 1.008° 0.029 0.812° 0.023 1.057° 0.060 0.773° 0.014
Duck 1.701° 0.078 1.701° 0.055 1.531° 0.042 1.481° 0.053
Eggbox - 0.056 - 0.074 - 0.048 - 0.025
Glue - 0.050 - 0.049 - 0.040 - 0.036
Holepuncher 1.265° 0.052 1.548° 0.058 1.295° 0.060 1.009° 0.029
Iron 1.205° 0.027 1.223° 0.027 0.927° 0.020 0.911° 0.015
Lamp 1.050° 0.029 1.235° 0.042 1.054° 0.019 0.902° 0.020
Phone 1.208° 0.040 1.122° 0.032 0.925° 0.019 0.889° 0.025
Average 1.280° 0.048 1.242° 0.043 1.103° 0.040 0.924° 0.027

Table 2: Comparison of the median of absolute angular and relative translation error on the Occlusion LindMOD dataset [1].
We do not report the rotation error of symmetric objects (eggbox, and glue) because of its non-unique rotation representation.

Object PVNet [6] CNN w/ FW Ours w/ FW Ours
Rotation Translation | Rotation Translation | Rotation Translation | Rotation Translation
Ape 4.103° 0.210 4.222° 0.185 4.015° 0.171 3.871° 0.157
Can 2.722° 0.068 2.879° 0.069 2.793° 0.067 2.704° 0.043
Cat 6.012° 0.239 6.480° 0.363 6.552° 0.335 5.852° 0.274
Driller 2.774° 0.072 2.567° 0.131 2.762° 0.120 2.545° 0.056
Duck 6.923° 0.156 6.795° 0.115 6.537° 0.108 6.533° 0.102
Eggbox - 0.325 - 0.295 - 0.284 - 0.318
Glue - 0.275 - 0.246 - 0.235 - 0.266
Holepuncher || 3.969° 0.121 3.917° 0.116 3.918° 0.126 3.629° 0.088
Average 4.417° 0.183 4.477° 0.190 4.430° 0.181 4.189° 0.163
Using Equations (3) and (4), the following derivatives can
be obtained. fa 0
Ze
JzTw ox fy 3x2
0 = = 0 —= eR (6)
Ze ot Ze
faYuw fae fyyc
0 T2 T T2
Ze z2 zZ
fz2w
p 0 3. Additional Ablation Stud
¢ y
0 JyTu Ablation on effect of warping. We show the median
Ox fzzj of absolute angular and relative translation error on the
= = 0 yew e R9%? 5) LineMOD and Occlusion LineMOD datasets in Tables 1
oR fzg and 2. The relative translation error is computed with re-
0 yow spect to object diameter. The initial pose error on the
Fotor ch . LineMOD dataset [3] is relatively small and the methods
_JaPetuw - JyYelw using warping improve score properly. On the contrary,
2 2
f e f e the initial pose error is large on the Occlusion LineMOD
zLcYw yYcYw
22 S22
foTeZw fyyczw
22 S22

Table 3: Ablation of the channel size on the LineMOD
dataset

Channel Size 1 3 5 7 9
ADD(-S) 952 96.1 957 949 945

Table 4: Runtime comparison among recent methods. In
CNN with feature warping (FW) the initial feature is ob-
tained using CNN and then warp the feature based on an
updated pose. We assume the number of iterations is 5 for
RePOSE and FW denotes feature warping. The FPS is re-
ported with refinement of 5 objects.

Method Runtime
DeepIM [5] (1 iters) 45.8 ms
DeepIM [5] (4 iters) 166.8 ms
CosyPose [4] (1 iters) 38.3 ms
CosyPose [4] (2 iters) 77.1 ms

RePOSE w/ different feature extraction methods

CNN w/ FW 19.6 ms
Ours w/ FW 13.5 ms
Ours 12.4 ms

dataset. In that case, feature warping becomes less effective.
Being different from the methods using feature warping, our
iterative deep feature rendering method can generate a fea-
ture with a complete shape. We believe this characteristics
of feature rendering leads to successful reduction of the er-
ror of rotation and translation on both datasets.

Ablation on the number of channels in the neural tex-
tures We vary the number of channels in the neural tex-
tures. We report the results on the LineMOD dataset in Ta-
ble 3. Note, the results are comparable, however, setting
number of channels to 3 results in the best performance.

Runtime Ablation on Feature Warping. DeepIM [5]
and CosyPose [4] run a CNN every iteration on a concate-
nated image of a zoomed input and rendered images to com-
pare these two images and output a pose directly. Accord-
ing to the ablation study by [5], high-resolution zoomed-in
is a key and it improves the ADD(-S) score by 23.4. How-
ever, as shown in Table 4, extracting image features from
zoomed images multiple times leads to a slow runtime. In-
stead, RePOSE runs a CNN once for an input image with
the original resolution. Additionally, an image representa-
tion of a rendered image can be extracted within 1ms be-
cause of deep texture rendering. This makes the runtime
of RePOSE faster than prior methods while keeping a com-
parable accuracy to the prior methods. We also measure
the runtime of RePOSE using different feature extraction
methods for a rendered image. As shown in Table 4 in the

320
300 A
280 A
260 -
240 A
220 A
200 A
180 1
160 A
140 1
120
100 1

DeeplM (1 iteration)
DeeplM (4 iterations)
CosyPose (1 iteration)
CosyPose (2 iterations)
RePOSE (1 iteration)
RePOSE (5 iterations)

JAREEL

FPS

1 2 3 4 5 6 7 8 9 10
Number of Objects

Figure 1: Trade-off between FPS and number of objects of
recent methods.

supplemental and Table 4 and 5 in the main paper, RePOSE
with deep texture rendering (Ours) achieves the fastest and
highest accuracy among these three variants.

Runtime Ablation on the number of objects We inves-
tigate the trade-off between FPS and number of objects. As
shown in 1, RePOSE is the only method which runs at over
than 60 FPS even with refinement of 10 objects. 6D pose
refinement is always performed after initial pose estimation.
Thus, it is crucial to make sure it runs at faster than real-time
(30 FPS). DeepIM causes an out of memory error when the
number of object is more than 6 with a NVIDIA RTX2080
which has 8GB memory.

References

[1] Eric Brachmann, Alexander Krull, Frank Michel, Ste-
fan Gumhold, Jamie Shotton, and Carsten Rother.
Learning 6d object pose estimation using 3d object co-
ordinates. In ECCV, 2014. 2

[2] Guillermo Gallego and Anthony Yezzi. A compact for-
mula for the derivative of a 3-d rotation in exponential
coordinates. Journal of Mathematical Imaging and Vi-
sion, 2015. 1

[3] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic,
Stefan Holzer, Gary Bradski, Kurt Konolige, and Nas-
sir Navab. Model based training, detection and pose es-
timation of texture-less 3d objects in heavily cluttered
scenes. In ACCV, 2012. 2

[4] Y. Labbe, J. Carpentier, M. Aubry, and J. Sivic. Cosy-
pose: Consistent multi-view multi-object 6d pose esti-
mation. In ECCYV, 2020. 3

[5] Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter
Fox. Deepim: Deep iterative matching for 6d pose es-
timation. In ECCV, 2018. 3

[6] Sida Peng, Xiaowei Liu, and Hujun Bao. Pvnet: Pixel-
wise voting network for 6dof pose estimation. In CVPR,
2019. 2

[7] Karen Simonyan and Andrew Zisserman. Very deep

convolutional networks for large-scale image recogni-
tion. In /CLR, 2015. 1

