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A. Experimental details
View selection For most few-view Realistic Synthetic ex-
periments, we randomly subsample 8 of the available 100
training renders. Views are not manually selected. However,
to compare the ability of NeRF and DietNeRF to extrapolate
to unseen regions, we manually selected 14 of the 100 views
mostly showing the right side of the Lego scene. For DTU
experiments where we fine-tune pixelNeRF [12], we use the
same source view as [12]. This viewpoint was manually
selected and is shared across all 15 scenes.

Simplified NeRF baseline The published version of
NeRF [6] can be unstable to train with 8 views, often converg-
ing to a degenerate solution. We found that NeRF is sensitive
to MLP parameter initialization, as well as hyperparameters
that control the complexity of the learned scene representa-
tion. For a fair comparison, we tuned the Simplified NeRF
baseline on each Realistic Synthetic scene by modifying
hyperparameters until object geometry converged. Table 1
shows the resulting hyperparameter settings for initial learn-
ing rate prior to decay, whether the MLP fθ is viewpoint
dependent, number of samples per ray queried from the fine
and coarse networks, and the maximum frequency sinusoidal
encoding of spatial position (x, y, z). The fine and coarse
networks are used in [6] for hierarchical sampling. ✗ denotes
that we do not use the fine network.

Implementation Our implementation is based on a Py-
Torch port [11] of NeRF’s original Tensorflow code. We
re-train and evaluate NeRF using this code. For memory
efficiency, we use 400×400 images of the scenes as in [11]
rather than full-resolution 800×800 images. NV is trained
with full-resolution 800 × 800 views. NV renderings are
downsampled with a 2x2 box filter to 400× 400 to compute
metrics. We train all NeRF, Simplified NeRF and DietNeRF
models with the Adam optimizer [4] for 200k iterations.

Metrics Our PSNR, SSIM, and LPIPS metrics use the
same implementation as [12] based on the scikit-image

Table 1. Simplified NeRF training details by scene in the Re-
alistic Synthetic dataset. We tune the initial learning rate, view
dependence, number of samples from fine and coarse networks for
hierarchical sampling, and the maximum frequency of the (x, y, z)
spatial positional encoding.

Scene LR View dep. Fine Coarse Max freq.

Full NeRF 5× 10−4 ✓ 128 64 29

Lego 5× 10−5 ✓ ✗ 128 25

Chair 5× 10−5 ✗ ✗ 128 25

Drums 5× 10−5 ✗ ✗ 128 25

Ficus 5× 10−5 ✗ ✗ 128 25

Mic 5× 10−5 ✗ ✗ 128 25

Ship 5× 10−5 ✗ ✗ 128 25

Materials 1× 10−5 ✗ ✗ 128 25

Hotdog 1× 10−5 ✗ ✗ 128 23

Python package [10]. For the DTU dataset, [12] excluded
some poses from the validation set as ground truth pho-
tographs had excessive shadows due to the physical capture
setup. We use the same subset of validation views.

For both Realistic Synthetic and DTU scenes, we also
included FID and KID perceptual image quality metrics.
While PSNR, SSIM and LPIPS are measured between pairs
of pixel-aligned images, FID and KID are measured be-
tween two sets of image samples. These metrics compare
the distribution of image features computed on one set of im-
ages to those computed on another set. As distributions are
compared rather than individual images, a sufficiently large
sample size is needed. For the Realistic Synthetic dataset,
we compute the FID and KID between all 3200 ground-truth
images (across train, validation and testing splits and across
scenes), and 200 rendered test images at the same resolu-
tion (25 test views per scene). Aggregating across scenes
allows us to have a larger sample size. Due to the setup
of the Neural Volumes code, we use additional samples for
rendered images for that baseline. For the DTU dataset, we
compute FID and KID between 720 rendered images (48
per scene across 15 validation scenes, excluding the view-
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Figure 1. CLIP ViT embeddings are more similar between
views of the same scene than across different scenes. We show a
2D histogram for each pair of Realistic Synthetic scenes comparing
ViT embedding similarity and the distance between views. The
dashed line shows mean cosine similarity, and green histograms
have mean similarity is greater than 0.6. On the diagonal, two views
from the upper hemisphere of the same scene are sampled. Em-
beddings of different views of the same scene are generally highly
similar. Nearby (distance 0) and diagonally opposing (distance 8)
views are most similar. In comparison, when sampling views from
different scenes (lower triangle), embeddings are dissimilar.

point of the source image provided to pixelNeRF) and 6076
ground-truth images (49 images including the source view-
point across 124 training and validation scenes). FID and
KID metrics are computed using the torch-fidelity
Python package [7].

B. Per-scene metrics
Embedding similarity In Figure 1, we compare the co-
sine similarity of two views with the distance between their
camera origins for each pair of scenes in the Realistic Syn-
thetic dataset. When sampling both views from the same
scene, views have high cosine similarity (diagonal). For 6 of
the 8 scenes, there is some dependence on the relative poses
of the camera views, though similarity is high across all
camera distances. For views sampled from different scenes,
similarity is low (cosine similarity around 0.5).

Quality metrics Table 2 shows PSNR, SSIM and LPIPS
metrics on a per-scene basis for the Realistic Synthetic
dataset. FID and KID metrics are excluded as they need
a larger sample size. We bold the best method on each scene,

and underline the second-best method. Across all scenes in
the few-shot setting, DietNeRF or DietNeRF fine-tuned for
50k iterations with LMSE performs best or second-best.

C. Qualitative results and ground-truth

In this section, we provide additional qualitative results.
Figure 2 shows the ground-truth training views used for
8-shot Realistic Synthetic experiments. These views are
sampled at random from the training set of [6]. Random
sampling models challenges with real-world data capture
such as uneven view sampling. It may be possible to improve
results if views are carefully selected.

In Figure 3, we provide additional renderings of Realistic
Synthetic scenes from testing poses for baseline methods and
DietNeRF. Neural Volumes generally converges to recover
coarse object geometry, but has wispy artifacts and distor-
tions. On the Ship scene, Neural Volumes only recovers very
low-frequency detail. Simplified NeRF suffers from occlud-
ers that are not visible from the 8 training poses. DietNeRF
has the highest quality reconstructions without these distor-
tions or occluders, but does miss some high-frequency detail.
An interesting artifact is the leakage of green coloration to
the back of the chair.

Finally, in Figure 4, we show renderings from pixelNeRF
and DietPixelNeRF on all DTU dataset validation scenes not
included in the main paper. Starting from the same check-
point, pixelNeRF is fine-tuned using LMSE for 20k iterations,
whereas DietPixelNeRF is fine-tuned using LMSE + LSC for
20k iterations. DietPixelNeRF has sharper renderings. On
scenes with rectangular objects like bricks and boxes, Diet-
PixelNeRF performs especially well. However, the method
struggles to preserve accurate geometry in some cases. Note
that the problem is under-determined as only a single view
is observed per scene.

D. Adversarial approaches

While NeRF is only supervised from observed poses,
conceptually, a GAN [2] uses a discriminator to compute a
realism loss between real and generated images that need
not align pixel-wise. Patch GAN discriminators were in-
troduced for image translation problems [3, 13] and can be
useful for high-resolution image generation [1]. SinGAN [8]
trains multiscale patch discriminators on a single image,
comparable to our single-scene few-view setting. In early
experiments, we trained patch-wise discriminators per-scene
to supervise fθ from novel poses in addition to LSC. How-
ever, an auxiliary adversarial loss led to artifacts on Realistic
Synthetic scenes, both in isolation and in combination with
our semantic consistency loss. SinGAN often pasted the
same image multiple times across views, with realistic tex-
tures but implausible geometry. On the Lego scene, adding
a SinGAN-style loss to NeRF led to 17.90 PSNR, while



Table 2. Quality metrics for each scene in the Realistic Synthetic dataset with 8 observed views.

PSNR ↑ Lego Chair Drums Ficus Mic Ship Materials Hotdog

NeRF 9.726 21.049 17.472 13.728 26.287 12.929 7.837 10.446
NV [5] 17.652 20.515 16.271 19.448 18.323 14.457 16.846 19.361
Simplified NeRF 16.735 21.870 15.021 21.091 24.206 17.092 20.659 24.060
DietNeRF (ours) 23.897 24.633 20.034 20.744 26.321 23.043 21.254 25.250
DietNeRF, LMSE ft (ours) 24.311 25.595 20.029 20.940 26.794 22.536 21.621 26.626

NeRF, 100 views 31.618 34.073 25.530 29.163 33.197 29.407 29.340 36.899

SSIM ↑ Lego Chair Drums Ficus Mic Ship Materials Hotdog

NeRF 0.526 0.861 0.770 0.661 0.944 0.605 0.484 0.644
NV [5] 0.707 0.795 0.675 0.815 0.816 0.602 0.721 0.796
Simplified NeRF 0.775 0.859 0.727 0.872 0.930 0.694 0.823 0.894
DietNeRF (ours) 0.863 0.898 0.843 0.872 0.944 0.758 0.843 0.904
DietNeRF, LMSE ft (ours) 0.875 0.912 0.845 0.874 0.950 0.757 0.851 0.924

NeRF, 100 views 0.965 0.978 0.929 0.966 0.979 0.875 0.958 0.981

LPIPS ↓ Lego Chair Drums Ficus Mic Ship Materials Hotdog

NeRF 0.467 0.163 0.231 0.354 0.067 0.375 0.467 0.422
NV [5] 0.253 0.175 0.299 0.156 0.193 0.456 0.223 0.203
Simplified NeRF 0.218 0.152 0.280 0.132 0.080 0.283 0.151 0.139
DietNeRF (ours) 0.110 0.092 0.117 0.097 0.053 0.204 0.102 0.097
DietNeRF, LMSE ft (ours) 0.096 0.077 0.117 0.094 0.043 0.193 0.095 0.067

NeRF, 100 views 0.033 0.025 0.064 0.035 0.023 0.125 0.037 0.025

DietNeRF had 24.31 PSNR (Table 2).
GRAF [9] also uses an adversarial loss, but has a different

setup than DietNeRF. GRAF generates new object models,
while DietNeRF synthesizes novel views of an observed
object. Unlike SinGAN, GRAF uses many unposed, single-
category images while DietNeRF trains on a few posed im-
ages of one scene (Realistic Synthetic datset) or multiple
posed images of different categories (DTU). Despite these
differences, adding our semantic consistency loss to gener-
ative models can be helpful. Since GAN generated objects
do not correspond to individual images in the CUB dataset,
we modified LSC to compare representations of two render-
ings, rather than the representation of one rendering and one
ground truth image. We performed an experiment on the
CUB birds dataset used by [9] and find that a variant of our
semantic consistency loss improves GRAF’s validation FID
from 36.32 to 33.44.

E. Probabilistic interpretation

Our loss regularizes a conditional generative model in
unobserved regions. Let fθ(p) be NeRF’s rendered image
with parameters θ at pose p, and pD(x|p) be the unknown
distribution over the true image x at pose p. NeRF can

define a generative model: a diagonal Gaussian centered at
the rendered image pθ(x|p) = N (x; fθ(p), I). Then, NeRF
maximizes conditional likelihood of observed images:

argθ minEp KL(pD(x|p) ∥ pθ(x|p))
= argθ minEpEpD(x|p)[− log pθ(x|p)]
= argθ minEpEpD(x|p)[∥fθ(p)− x∥2] (1)

≈ argθ min
1

|D|
∑

(x,p)∈D

∥fθ(p)− x∥2︸ ︷︷ ︸
LMSE, NeRF loss

(2)

since pD(x|p) doesn’t depend on θ and log likelihood is
MSE for Gaussians. NeRF estimates the expectation (1)
with only a few (x,p) pairs: those available in the dataset
D. While the sample mean (2) with a finite number of
poses p is unbiased, in practice we usually only have a few
observed pairs per scene. To complete unseen regions better,
we add a regularizer that retains the expectation over p. If
q(z|x) = N (z;ϕ(x), I) for semantic net ϕ, DietNeRF’s



Lego Chair Drums Ficus Mic Ship Materials Hotdog

Figure 2. Training views used for Realistic Synthetic scenes. These views are randomly sampled from the available 100 views. This is a
challenging setting for view synthesis and 3D reconstruction applications as objects are not uniformly observed. Some views are mostly
redundant, like the top two Lego views. Other regions are sparsely observed, such as a single side view of Hotdog.

minimizes a combined loss:

argθ minEp,x[KL(pD∥pθ) + λKL(q(z|x)∥q(z|fθ(p)))]

= argθ min
1

|D|
∑

D LMSE + λEp,q(z|x)[∥ϕ(fθ(p))− z∥2]

= argθ min
1

|D|
∑

D LMSE + Ep λϕ(fθ(p))
Tϕ(x)︸ ︷︷ ︸

LSC, DietNeRF regularizer

The regularizer could be estimated with many samples of p.

References
[1] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming

transformers for high-resolution image synthesis. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 12873–12883, June 2021.
2

[2] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Advances in
Neural Information Processing Systems, volume 27. Curran
Associates, Inc., 2014. 2

[3] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros.
Image-to-image translation with conditional adversarial net-
works. Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017. 2

[4] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015. 1

[5] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural
volumes: Learning dynamic renderable volumes from images.
ACM Trans. Graph., 38(4):65:1–65:14, July 2019. 3

[6] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. In Proceedings of the European Conference on Computer
Vision (ECCV), 2020. 1, 2



[7] Anton Obukhov, Maximilian Seitzer, Po-Wei Wu, Semen
Zhydenko, Jonathan Kyl, and Elvis Yu-Jing Lin. High-fidelity
performance metrics for generative models in PyTorch, 2020.
Version: 0.2.0, DOI: 10.5281/zenodo.3786540. 2

[8] Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. Singan:
Learning a generative model from a single natural image. In
Computer Vision (ICCV), IEEE International Conference on,
2019. 2

[9] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. Graf: Generative radiance fields for 3d-aware image
synthesis. In Advances in Neural Information Processing
Systems (NeurIPS), 2020. 3
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Figure 3. Additional renderings of Realistic Synthetic scenes.



Figure 4. One-shot novel view synthesis: Additional renderings of DTU scenes generated from a single observed view (left). Ground truth
views are shows for reference, but are not provided to the model. pixelNeRF and DietPixelNeRF are pre-trained on the same dataset of other
scenes, then fine-tuned on the single input view for 20k iterations with LMSE alone (pixelNeRF) or LMSE + LSC (DietPixelNeRF).


