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In the supplementary material, we first report more im-
plementation details followed by details on COCO+LVIS
dataset and its experiments, discuss the training and infer-
ence time of our approach, followed by visualization of se-
mantic class embeddings and more qualitative results. Code
is available at https://github.com/shipra25jain/ESSNet.

A . More implementation details

In DeepLabV3+ architecture, we use output stride as
16 and dilation rate for ASPP = [6, 12, 18]. All models
are trained using the polynomial learning rate scheduler :
Ir = baselr*(1 - (—)Power the SGD optimizer with
momentum, and the weight decay of 1e-4. For baseline and
our segmentation network, both power and momentum are
set to 0.9. These two parameters for our embedding ma-
trix are set to 0.95. The base learning rate is set to le-2 for
ADE20k, COCO-Stuff10k, and COCO+LVIS dataset and
le-1 for Cityscapes and Pascal VOC dataset. The learning
rate for the backbone is 0.1 times that of the main network
and the momentum of its BN layers as le-2.

B . More details about COCO+LVIS

The vocabulary of our bootstrapped COCO+LVIS
dataset is build from 181 stuff and 1203 thing classes from
COCO and LVIS annotations, respectively. As stuff classes
can sometimes be things and vice-versa depending upon the
scene and context, there is an overlap of 10 classes between
COCO and LVIS vocabulary. The common classes are pil-
low, curtain, table, cabinet, banner, towel, salad, napkin,
blanket, and cupboard. Figure 2 shows examples of classes
considered as stuff and thing depending upon the context.
COCO+LVIS has 1284 classes. Figure 1 shows the class
names and their font size determined by pixel ratio. Fig-
ure 3 shows the number of images every class occur in and
the long-tail distribution of classes.

We also evaluate our and baseline model with GN for n-
most frequent classes in Figure 5. It shows that our model
clearly outperforms the baseline, even when Group Nor-

malization is used. We perform ablations on COCO+LVIS
dataset. In our approach, replacing nearest neighbour sam-
pling by random sampling gives mIoU of 0.5. Keeping all
the components of our approach in place and only remov-
ing normalization layer gives 4.15 mloU. Similarly, remov-
ing only regularization loss leads to 3.9 mloU. These results
confirm the significance of sampling technique, normaliza-
tion and regularization loss in our approach.

C . Training and Inference time

Table 1 shows inference and training times for datasets
with a different number of semantic classes. In comparison
to the baseline model, our model takes slightly higher in-
ference time for datasets with a lower number of semantic
categories and lower inference time for datasets with higher
number of classes. During inference, we use index func-
tionality of FAISS library, which first builds an index using
class embeddings and then another function call is used to
perform the nearest neighbour search. The inference time in
our computation includes the duration of the forward pass
and segmentation prediction and does not include time for
model initialization. We compute inference time for mod-
els with ResNet50 backbone and use maximum validation
batch size that can fit in GPU. Images with 1024 x 2048 res-
olution for Cityscapes dataset and 512 x 512 for ADE20k
and COCO+LVIS dataset are used.

We train models for 200, 80 and 40 epochs for
Cityscapes, ADE20k and COCO+LVIS datasets respec-

dataset model inference time training time
Cityscanes baseline 0.195 4.94
yseap ours 0233 534
baseline 0.023 3.01
ADE20k ours 0.026 4.80
baseline 0.049 4.20
COCOHLVIS — e 0.036 5.06

Table 1. Analysis of inference and training time. Inference time is
given in seconds per image and training time is given in seconds
per iteration. Lower training and inference time is better.
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Figure 1. Word cloud of semantic classes of COCO+LVIS dataset. Bigger font size means higher pixel ratio.

Figure 2. Top: Curtain as stuff class (in left) and as thing class (in
right). Bottom: Cabinet as stuff class (in left) and as thing class
(in right).
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Figure 3. Number of images per semantic class.

tively. In terms of training time, our model takes higher
time per iteration for all datasets. It is one of the signifi-
cant weakness of our approach. k-nearest search compu-
tation performed for every pixel is the major bottleneck
in our computation time. This computation can be opti-
mized using non-exhaustive search methods like clustering
the class embeddings and searching the neighbours for the
query only in the cluster in which it lies. We notice that
output pixel embeddings for adjacent pixels are very close
in embedding space, and this property can be used to com-
pute nearest neighbour search for only 0.25 or 0.125 frac-
tions of total pixels and use same negative samples for 4 or
8 neighbouring pixels. While training both the models for
the same number of epochs, we also notice that the baseline
converges in 2-6 fewer epochs than our model. This de-
pends upon the number of nearest neighbours & used during
the training.

D . Semantic Embeddings and Visualizations

In this section, we investigate the relation between em-
beddings of different pixels in an image and the class em-
beddings learned by our model. Figure 4 shows the corre-
lation between the frequency of classes and length of class
embedding when normalization layers are not used. There-
fore, normalization is essential to suppress the bias caused
due to the class imbalance. Figure 6 shows an example of
ground truth segmentation mask from ADE20k dataset and
corresponding pixel embeddings from our model projected
in 2D space. As desired, the pixels belonging to the same
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Figure 4. Class Frequency and Embedding length Left: Frequency of classes in training dataset for ADE20k dataset. Right: Length of
class embeddings when trained the model without normalization layers. There is a correlation between frequency of class and distance of

its class embedding from origin.
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Figure 5. mloU for COCO+LVIS dataset with increasing number
of classes, with most frequent first.

class (with the same color) are clustered together. We also
notice that the transition of embedding from one class pixel
to an adjacent pixel of another class is smooth. This nature
of our pixel embeddings might lead to misclassification of
pixels at the boundary of the object. Figure 7 shows exam-
ples of predicted masks and projection of their pixel em-
beddings to RGB space. The same colour of pixels in the
projection image suggests that their pixel embeddings are
closer in feature space, but their nearest class embedding
can be different (can be seen from predicted masks).

We perform agglomerative clustering of classes based
on the class embeddings learned by our model in Figure
8 and 9. We notice in Figure 8§ that classes which oc-
cur in a similar context or are semantically similar are
closer in feature space. There are several small sub-trees
for different contexts like kitchen, scenery, bedroom, inte-
rior and many more. For example, pillow, cushion, bed,
couch, stool, chair and hassock are clustered together. Also,
kitchen equipment like microwave, refrigerator, cabinet,
dishwashing machine, cooking stove, sink, kitchen island

Tiver ground

Figure 6. Pixel Embeddings in 2D space Left: Example of
groundtruth segmentation mask from ADE20k dataset. Right:
Circle-shaped markers - pixel embeddings, output from our model
is projected into 2D. Star-shaped markers- class embeddings. The
color of circular marker denotes the target class of pixel.

and countertop fall in same sub-tree. Semantically simi-
lar classes like monitoring device and CRT screen are ad-
jacent. The light source and lamp is another pair of ad-
jacent classes with the same semantics. In Figure 9, we
perform agglomerative clustering for the hundred most fre-
quent classes from COCO+LVIS dataset. We observe sim-
ilar clusters for COCO+LVIS dataset also. We also per-
formed k-means clustering on embeddings from ours+GN
model and we have attached the list of 70 clusters in sup-
plementary. Clusters such as (bear, grizzly, polar_bear) and
(cup, mug, teacup) suggests that embeddings are semanti-
cally meaningful.

E . Detailed Qualitative Results

We report more qualitative results for two most challeng-
ing datasets i.e. COCO-Stuff10k and COCO+LVIS in Fig-
ure 10 and 11 respectively.



predicted mask pixel embeddings in RGB space

Figure 7. Pixel Embeddings in RGB Space Examples of pre-
dicted segmentation mask for ADE20k dataset (left). Pixel embed-
dings are projected into 3D space and transformed to RGB space
(right).
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Figure 8. Similarities in Class Embeddings: Agglomerative clustering for ADE20k classes based on class embeddings learned by our
ESS approach. We observe some of the semantically similar classes clustered together. For example, green sub-tree has couch, seat, bed,
pillow, hassock, cushion, chair, stool and cradle classes clustered together. These classes often occur together in a bedroom or drawing
room scene and are used for sitting or sleeping. In the yellow sub-tree towards bottom, we notice kitchen appliances clustered together.
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Figure 9. Similarities in Class Embeddings: Agglomerative clustering for COCO+LVIS classes based on class embeddings learned by
our ESS approach
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Figure 10. Qualitative results for COCO-Stuff10k dataset.



image groundtruth baseline ours
Figure 11. Qualitative results for COCO+LVIS dataset. Black color denotes the unlabelled pixels.



