
Appendices

A. Few-shot learning
A.1. Datasets

We experiment with four datasets for few-shot learning:
Omniglot [25], MiniImageNet [51], TieredImageNet [38],
and CIFAR-FS [6]. The Omniglot dataset consists of hand-
written characters from 50 different alphabets and 1623 char-
acters. There are 20 handwritten examples of each character.
MiniImageNet contains 100 classes form ImageNet [13],
which are split to 64, 16, and 20 classes for meta-training,
meta-validation, and meta-test, respectively. TieredImag-
Net has 608 classes from ImageNet, which are grouped
into 34 higher-level categories following the ImageNet tax-
onomy. They are split into 20 meta-training categories, 6
meta-validation categories, and 8 meta-test categories. Due
to this partition scheme, the meta-test classes are less similar
to the meta-training classes in TieredImageNet than in other
datasets. CIFAR-FS re-purposes CIFAR-100 [24], splitting
its 100 classes into 64, 16, and 20 classes for meta-training,
meta-validation, and meta-test, respectively.

A.2. Experiment protocols and hyper-parameters
Our experiment protocols and implementation details

largely follow MAML [15] and Reptile [33]. In particular,
we use a convolutional neural network that comprises four
modules in all the experiments. Each module has 3x3 convo-
lutions, a batch-normalization layer, 2x2 max-pooling, and
the ReLU activation, and every convolutional layer contains
64 filters for the experiments on Omniglot and 32 filters for
other datasets. For fair comparison, we also re-implement
some of the existing methods using this network architecture.
We report more details for the “Lazy” Reptile in Table 6. For
“Lazy” MAML, we set k = 10 for 1-shot and 5-shot tasks,
respectively, on both MiniImageNet and TieredImageNet.

A.3. Many-Way Classification
We have presented many-way results on TieredImageNet

for “Lazy” MAML in section 5.1.1. Here, we describe the
implementation details for these experiments. We set the
inner learning rate (⌘) to 0.005 and the outer learning rate
(�) to 0.001 for all the settings. We let the student run k = 15,
15 and 18 steps for 20-way, 30-way and 50-way, respectively
during meta-training.

A.4. Computational Analysis
In our evaluation, we also want to answer the following

question empirically. How does the memory requirements
of “Lazy” MAML compare with MAML?. Figure 4 shows
the memory trade-off for “Lazy” MAML and MAML on
5-shot 20-way MiniImageNet. “Lazy” MAML decouples
the dependency of inner and outer loop by teacher-student

scheme which allows it to define a very lightweight compu-
tation graph. The figure shows that the memory of the “Lazy”
MAML doesn’t exceed beyond 5 GB for many inner gradient
steps while on the other hand, MAML reaches the capacity
of 12 GB after 5 inner steps. The right panel shows the
computation time per iteration with respect to multiple gra-
dient inner steps. The time taken by “Lazy” MAML doesn’t
increase exponentially as compared to MAML which takes
more compute time and reaches the maximum capacity of
memory after 5 inner steps.

A.5. Additional results on many-way learning
The left panel of Figure 5 compares the results of Reptile

and “Lazy” Reptile for N -way-five-shot learning on Tiered-
ImageNet where N varies in {5, 20, 30}. Our approach out-
performs Reptile. We emphasize that not all meta-learning
algorithms can be approximated by a first-order version;
for example, it is not immediately clear how to do it for
Algorithm 2, the two-component weighting method for long-
tailed classification, in the main text. The right panel of
Figure 5 shows some 20-way-5-shot results on MiniIma-
geNet. We can see that our lazy strategy boosts both MAML
and Reptile by a significant margin, which is similar to what
we see in Figure 2 of the main paper. It again indicates
that more training data needs more steps of exploration for
a task-specific model and hence magnifies the benefit of
our teacher-student scheme introduced to both MAML and
Reptile.

B. Meta-Attack
Here, we formally present the algorithm of our lazy meta-

learning approach to training the meta-attacker in Algo-
rithm 3. As described in the main paper that the original
meta-attack [14] uses Reptile to train the attacker, so it is
straightforward to improve the approach by using a “lazy”
teacher. The inputs to the meta-attacker are images, and the
desired outputs are their gradients — during meta-training,
the gradients are generated from different classification mod-
els. Instead of the cross-entropy loss, meta-attack adopts a
mean-squared error (MSE) loss in the inner loop, i.e.,

LTi
Dtr

= ||�(Xij)� Gij ||22

where the task Ti is to find adversarial examples for the
inputs to the i-th pre-trained classification network, Xij is
an image sampled for the task, Gij are the gradients of the
classification network with respect to (w.r.t.) the image, and
�(·) is a task-specific model whose output is to approximate
the gradients Gij . This model is useful because, given a
blackbox classification network, we can use the task-specific
model to predict the gradients of this network w.r.t. an image,
followed by gradient ascent towards an adversarial example
(cf. Algorithm 4).

Table 6. Hyper-parameter details for few-shot learning in ours (Reptile). The “Eval inner batch” row shows the numbers for both 1-shot and
5-shot settings.

Hyper-parameter Omniglot CIFAR-FS Mini-ImageNet TieredImageNet
Inner learning rate (⌘) 0.001 0.001 0.001 0.001
Inner iterations (k) 5 8 8 8
Inner batch size 10 10 10 10
Training shots 10 15 15 15
Outer step-size (�) 1.0 1.0 1.0 1.0
Total outer-iterations 100k 120k 120k 130k
Meta batch size 20 20 20 20
Eval. inner iterations 50 50 50 50
Eval. inner batch 5/15 5/15 5/15 5/15

num of inner steps

se
c

/ m
et

a-
ite

ra
tio

n

Figure 4. Left: Memory trade-offs with 4 layer CNN on 20-way-5-shot MiniImageNet task. b). Computation time (sec per meta-iteration)
w.r.t the number of inner gradient steps on 20-way-5-shot MiniImageNet task with batch size 2.

Algorithm 3 Training algorithm of meta-attack using “lazy”
Reptile
Require: A distribution over tasks PT
Require: Input Images X , gradients Gi generated from a

classification network serving task T i

Require: Learning rates ↵,�
Ensure: The meta attacker ✓

1: Randomly initialize the meta-attacker ✓
2: while not done do
3: Sample a batch of tasks {T i ⇠ PT }
4: for all {T i} do
5: Sample data Dtr and Dval for Ti // in the form

of {Xij ,Gij}
6: �i,0 ✓
7: for j = 1, 2, · · · , k do
8: �i,j �i,j�1 � ↵r�LTi

Dtr
(�i,j�1)

9: end for
10: �i argmin� LTi

Dval
(�✓ + (1� �)�i,k)

11: �i(✓) �i✓ + (1� �i)�i,k

12: end for
13: ✓ ✓ � �

P
i(✓ � �i(✓))

14: end while

Algorithm 4 Adversarial Meta-Attack
Require: Test image xo with label t, meta-attacker f✓, tar-

get model Mtar, iteration interval j, selected top-q co-
ordinates

1: for t = 0, 1, 2, · · · do
2: if (t+ 1) mod j = 0 then
3: Perform zeroth-order gradient estimation on top-

q coordinates, denoted as It and
4: obtain gt.
5: Fine-tune meta-attacker f✓ with (xt,gt) on It by

L = |[f✓(xt]It � [gt]It |22.
6: else
7: Generate the gradient map gt directly from meta-

attacker f✓ with xt,
8: select coordinates It.
9: end if

10: Update [x0]It = [xt]It + �[gt]It .
11: if Mtar(x0) 6= t then
12: xadv = x0

13: break
14: else
15: xt+1 = x0

16: end if
17: end for
Ensure: adversarial example xadv .

20

30

40

50

60

70

5-way 20-way 30-way

M
ea

n
Ac

cu
ra

cy
 (%

)
Reptile Ours (Reptile)

72.21±0.94
68.73±0.4

34.47±0.46
37.55±0.48

29.27±0.36
25.16±0.32

10

15

20

25

30

35

40

MAML Ours (MAML) Reptile Ours (Reptile)

M
ea

n
Ac

cu
ra

cy
 (%

)

19.29±0.29

25.3±0.3

29.15±0.22

34.28±0.46

Figure 5. Left: Mean Accuracy (%) for N -way-five-shot classification on TieredImageNet. b). Mean Accuracy (%) for 20-way-5-shot
classification on MiniImageNet.

Table 7. Comparison of several methods under targeted attack on MNIST and CIFAR-10. Similar to the untargeted attack, we reduce the
number of queries for meta attack.

Dataset / Target model Method Success Rate Avg. L2 Avg. Queries

MNIST / Net4

Zoo [8] 1.00 2.63 23,552
Decision Boundary [1] 0.64 2.71 19,951
AutoZoom [47] 0.95 2.52 6,174
Opt-attack [9] 1.00 2.33 99,661

Meta attack [14] 1.00 2.66 1,299
Lazy meta-attack (ours) 1.00 2.63 1,108

CIFAR10 / Resnet18

Zoo [8] 1.00 0.55 66,400
Decision Boundary [1] 0.58 0.53 16,250
AutoZoom [47] 1.00 0.51 9,082
Opt-attack [9] 1.00 0.50 121,810
FW-black [7] 0.90 0.73 6,987

Meta attack [14] 0.93 0.77 3,667
Lazy meta-attack (ours) 0.92 0.69 3,092

Algorithm 3 presents how to train this meta-attacker by
applying our “lazy” teacher to Reptile, and we then follow
Algorithm 4 for attacking blackbox networks [14].

B.1. Results under targeted attack
In Table 5 of the main paper, we report the results under

untargeted attack. Here, we are presenting the results under
targeted attack for both MNIST and CIFAR-10 in Table 7.
Similar to untargeted attack, we achieve comparable results
on success rate and average `2 distortion using a smaller
number of queries.

