Appendices

A. Few-shot learning
A.1. Datasets

We experiment with four datasets for few-shot learning:
Omniglot [25], MinilmageNet [51], TieredImageNet [38],
and CIFAR-FS [6]. The Omniglot dataset consists of hand-
written characters from 50 different alphabets and 1623 char-
acters. There are 20 handwritten examples of each character.
MinilmageNet contains 100 classes form ImageNet [13],
which are split to 64, 16, and 20 classes for meta-training,
meta-validation, and meta-test, respectively. TieredImag-
Net has 608 classes from ImageNet, which are grouped
into 34 higher-level categories following the ImageNet tax-
onomy. They are split into 20 meta-training categories, 6
meta-validation categories, and 8 meta-test categories. Due
to this partition scheme, the meta-test classes are less similar
to the meta-training classes in TieredlmageNet than in other
datasets. CIFAR-FS re-purposes CIFAR-100 [24], splitting
its 100 classes into 64, 16, and 20 classes for meta-training,
meta-validation, and meta-test, respectively.

A.2. Experiment protocols and hyper-parameters

Our experiment protocols and implementation details
largely follow MAML [15] and Reptile [33]. In particular,
we use a convolutional neural network that comprises four
modules in all the experiments. Each module has 3x3 convo-
lutions, a batch-normalization layer, 2x2 max-pooling, and
the ReLU activation, and every convolutional layer contains
64 filters for the experiments on Omniglot and 32 filters for
other datasets. For fair comparison, we also re-implement
some of the existing methods using this network architecture.
We report more details for the “Lazy” Reptile in Table 6. For
“Lazy” MAML, we set k = 10 for 1-shot and 5-shot tasks,
respectively, on both MinilmageNet and TieredlmageNet.

A.3. Many-Way Classification

We have presented many-way results on TieredimageNet
for “Lazy” MAML in section 5.1.1. Here, we describe the
implementation details for these experiments. We set the
inner learning rate (1) to 0.005 and the outer learning rate
() t0 0.001 for all the settings. We let the student run k = 15,
15 and 18 steps for 20-way, 30-way and 50-way, respectively
during meta-training.

A.4. Computational Analysis

In our evaluation, we also want to answer the following
question empirically. How does the memory requirements
of “Lazy” MAML compare with MAML?. Figure 4 shows
the memory trade-off for “Lazy” MAML and MAML on
5-shot 20-way MinilmageNet. “Lazy” MAML decouples
the dependency of inner and outer loop by teacher-student

scheme which allows it to define a very lightweight compu-
tation graph. The figure shows that the memory of the “Lazy”
MAML doesn’t exceed beyond 5 GB for many inner gradient
steps while on the other hand, MAML reaches the capacity
of 12 GB after 5 inner steps. The right panel shows the
computation time per iteration with respect to multiple gra-
dient inner steps. The time taken by “Lazy” MAML doesn’t
increase exponentially as compared to MAML which takes
more compute time and reaches the maximum capacity of
memory after 5 inner steps.

A.S. Additional results on many-way learning

The left panel of Figure 5 compares the results of Reptile
and “Lazy” Reptile for [V-way-five-shot learning on Tiered-
ImageNet where N varies in {5, 20, 30}. Our approach out-
performs Reptile. We emphasize that not all meta-learning
algorithms can be approximated by a first-order version;
for example, it is not immediately clear how to do it for
Algorithm 2, the two-component weighting method for long-
tailed classification, in the main text. The right panel of
Figure 5 shows some 20-way-5-shot results on Minilma-
geNet. We can see that our lazy strategy boosts both MAML
and Reptile by a significant margin, which is similar to what
we see in Figure 2 of the main paper. It again indicates
that more training data needs more steps of exploration for
a task-specific model and hence magnifies the benefit of
our teacher-student scheme introduced to both MAML and
Reptile.

B. Meta-Attack

Here, we formally present the algorithm of our lazy meta-
learning approach to training the meta-attacker in Algo-
rithm 3. As described in the main paper that the original
meta-attack [14] uses Reptile to train the attacker, so it is
straightforward to improve the approach by using a “lazy”
teacher. The inputs to the meta-attacker are images, and the
desired outputs are their gradients — during meta-training,
the gradients are generated from different classification mod-
els. Instead of the cross-entropy loss, meta-attack adopts a
mean-squared error (MSE) loss in the inner loop, i.e.,

Ll =lle(Xi) — Gisll3

where the task 7; is to find adversarial examples for the
inputs to the i-th pre-trained classification network, Xj; is
an image sampled for the task, G;; are the gradients of the
classification network with respect to (w.r.t.) the image, and
¢(-) is a task-specific model whose output is to approximate
the gradients G;;. This model is useful because, given a
blackbox classification network, we can use the task-specific
model to predict the gradients of this network w.r.t. an image,
followed by gradient ascent towards an adversarial example
(cf. Algorithm 4).

Table 6. Hyper-parameter details for few-shot learning in ours (Reptile). The “Eval inner batch” row shows the numbers for both 1-shot and

5-shot settings.

Hyper-parameter Omniglot | CIFAR-FS | Mini-ImageNet | TieredlmageNet
Inner learning rate (1) 0.001 0.001 0.001 0.001
Inner iterations (k) 5 8 8 8
Inner batch size 10 10 10 10
Training shots 10 15 15 15
Outer step-size (3) 1.0 1.0 1.0 1.0
Total outer-iterations 100k 120k 120k 130k
Meta batch size 20 20 20 20
Eval. inner iterations 50 50 50 50
Eval. inner batch 5/15 5/15 5/15 5/15
GPU Memo
ry * MAML e Ours (MAML) - iMAML
e MAML e Ours (MAML) 15
12 c
m =
o 8 / S 10 P
= 3]
> 6 3
[@] 4 —° _g
5 2 €05
= 0 S
2 4 6 8 10 12 14 8

num of inner steps

0.0

2 4 6 8 10 12 14
num of inner steps

Figure 4. Left: Memory trade-offs with 4 layer CNN on 20-way-5-shot MinilmageNet task. b). Computation time (sec per meta-iteration)
w.r.t the number of inner gradient steps on 20-way-5-shot MinilmageNet task with batch size 2.

Algorithm 3 Training algorithm of meta-attack using “lazy”
Reptile

Require: A distribution over tasks Py
Require: Input Images X, gradients G; generated from a
classification network serving task 7;
Require: Learning rates «, 8
Ensure: The meta attacker 6
1: Randomly initialize the meta-attacker 6
2: while not done do
3 Sample a batch of tasks {7; ~ Pr}

4. forall {T,} do

5: Sample data Dy, and D, for 7; // in the form
of {X;;,Gi;}

6: (7257;70 «— 0

7: forj =1,2,--- Jk do

8: Gij 4 bijo1 — VL (hij1)

9: end for

10: Vi < argmin, ngl YO+ (1 —7)pik)

1 0i(0) v+ (1 —vi) i &

12: end for

13: 0«—60—p5>.(0—0¢:0))

14: end while

Algorithm 4 Adversarial Meta-Attack
Require: Test image =, with label ¢, meta-attacker fy, tar-
get model My, iteration interval j, selected top-g co-
ordinates
1: fort=0,1,2,--- do
2: if (t+1) mod j =0 then

3: Perform zeroth-order gradient estimation on top-
q coordinates, denoted as I; and
obtain g;.
5: Fine-tune meta-attacker fy with (x;,g¢) on I; by
£ = lfoleds, - loils, 3
: else

Generate the gradient map g; directly from meta-
attacker fy with x4,
select coordinates I;.
: end if
10: Update [:Z?l]]t = [xt]]t +)\[gt]]t.
11: if My, (2') # t then

o x

12: Tado = T
13: break

14: else

15: Tyl =’
16: end if

17: end for

Ensure: adversarial example x4,

u Reptile = Ours (Reptile) 40
72.210.94
+
70 68.7320.4 35
9 S
=560 <30
>)
3 g
5 50 325
[&] Q
Q <
< 40 37.55%0.48 < 20
S 34.4720.4 g
Q 29.27+0.36 =
- N B
20 10

5-way 20-way 30-way

19.2910.29

MAML

25.310.3

Ours (MAML)

34.2810.46

29.1510.22 I

Reptile Ours (Reptile)

Figure 5. Left: Mean Accuracy (%) for N-way-five-shot classification on TieredlmageNet. b). Mean Accuracy (%) for 20-way-5-shot

classification on MinilmageNet.

Table 7. Comparison of several methods under targeted attack on MNIST and CIFAR-10. Similar to the untargeted attack, we reduce the

number of queries for meta attack.

Dataset / Target model Method Success Rate Avg. Ly Avg. Queries
Zoo [8] 1.00 2.63 23,552
Decision Boundary [1] 0.64 2.71 19,951
MNIST / Net4 AutoZoom [47] 0.95 2.52 6,174
Opt-attack [9] 1.00 2.33 99,661
Meta attack [14] 1.00 2.66 1,299
Lazy meta-attack (ours) 1.00 2.63 1,108
Z00 [8] 1.00 0.55 66,400
Decision Boundary [!] 0.58 0.53 16,250
CIFARI10/Resnetl8 AutoZoom [47] 1.00 0.51 9,082
Opt-attack [9] 1.00 0.50 121,810
FW-black [7] 0.90 0.73 6,987
Meta attack [14] 0.93 0.77 3,667
Lazy meta-attack (ours) 0.92 0.69 3,092

Algorithm 3 presents how to train this meta-attacker by
applying our “lazy” teacher to Reptile, and we then follow
Algorithm 4 for attacking blackbox networks [14].

B.1. Results under targeted attack

In Table 5 of the main paper, we report the results under
untargeted attack. Here, we are presenting the results under
targeted attack for both MNIST and CIFAR-10 in Table 7.
Similar to untargeted attack, we achieve comparable results
on success rate and average fo distortion using a smaller
number of queries.

