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S1. Measurement of KL-Divergence

In Section 4.3 of our main manuscript, the KL-

divergence is evaluated with the following definition:

DKL(Pn‖Pn̂) =

255∑

i=0

pn(i) log
pn(i)

pn̂(i)
, (S1)

where Pn and Pn̂ denote the distribution of the ground truth

and generated noise maps, respectively. Also, pn and pn̂ are

the probability histogram of all noise maps from Pn and Pn̂.

The histogram pn is calculated as follows:

pn(i) =
1

mCHW

m,C,H,W∑

k,c,h,w

1{nk,c,h,w=i}, (S2)

where k, c, h, w denote indices of noise maps and color

channel, height, width of the corresponding image of size

H , W , and C and m are the number of color channels and

the number of the noise maps we want to evaluate, respec-

tively. 1{nk,c,h,w=i} is used as an indicator function which

refers the number of pixels with noise intensity of i. We

note that the histogram is calculated together between dif-

ferent color channels. The remaining histogram pn̂(i) for

generated noise map is also calculated in the same manner

as (S2).

S2. Implementation Details

Discriminator. We define the discriminator architecture

as a sequence of six ResBlocks with 3× 3 convolutions and

the following 1× 1 convolution, which reduces the number

of channels to one. Figure S1 shows the discriminator ar-

chitecture of our C2N framework. The output values from

the discriminator is averaged across spatial dimension to in-

dicate whether the image is real or generated one. We set

the number of channels for all 3×3 ResBlocks as 64, which

is the same number as the C2N generator.
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Figure S1: Discriminator architecture. The ResBlocks,

like those of the generator, are modified for low-level vision

problems [7].

Self-ensemble. We apply the self-ensemble technique [8,

7] to acquire final denoised results. For a noisy image, we

augment inputs by flipping and 90◦ rotations and evaluate

the denoising model 8 times including the original. We con-

vert each output to the original geometry by the inverse

transformations and average all to get the self-ensembled

result.

Fine-tuning on the DND In Section 4.4 of our main

manuscript, we also report the performance of the model

trained on the SIDD and then fine-tuned on the DND. We

fine-tune the C2N generator by training it for 16 more

epochs on the DND dataset, with initial learning rate of

10−5 multiplied by 0.8 for every 3 epochs.

S3. Architectures in the Model Analysis

For the model ablation study on synthetic noise in Sec-

tion 4.2 of our main manuscript, we use the notations GI
1×1

,

GI
1×1

+ GD
1×1

, and GI + GD to refer the variants of our

C2N. Figure S2 illustrates detailed diagrams of those vari-

ants. The model GI
1×1

in Figure S2a consists of a signal-

independent transformation module with 1×1 convolutions

that do not take clean image x and random vector r as input.

In contrast, the GI
1×1

+GD
1×1

in Figure S2b has both mod-

ules to produce signal-independent and signal-dependent
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Figure S2: Generator architectures in synthetic experiment. (a) signal-independent and spatially uncorrelated noise gen-

erator. (b) signal-dependent but spatially uncorrelated noise generator. (c) Our whole C2N generator, which can generate

signal-dependent and spatially correlated noise. Notations are same with Figure 3 in our main manuscript. n̂ denotes gener-

ated noise map and replication procedure of random vector r is skipped for visualization.
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Figure S3: Denoising results from model ablation study

on various synthetic noise. (a, d) Synthetic ground-truth

noisy image of Poisson P and spatially correlated Gaussian

noise S . (b, c) Denoising results of the C2N variant trained

on the Poisson noise and its following denoiser. (e, f) De-

noising results of the C2N variant trained on the spatially

correlated Gaussian noise and its following denoiser.

noise terms but only with 1 × 1 convolutions. Lastly, the

GI +GD in Figure S2c consists of all modules for the pro-

posed C2N, including GI
3×3

and GD
3×3

.

Test Noise Type
C2N Model G P S

GI
1×1

30.69 35.21 26.09

GI
1×1

+GD
1×1

30.66 35.80 28.91

GI +GD 30.40 35.23 31.03

Table S1: Denoising performance on various synthetic

noise. PSNR(dB) is calculated on the CBSD68 dataset.

S4. Denoising on Synthetic Noise

The primary purpose of the model ablation study on syn-

thetic noise in Section 4.2 of our main manuscript is to

demonstrate how our C2N can generate noise with various

characteristics. Still, we can also train the denoising net-

works followed by each C2N variant and evaluate their per-

formance on various synthetic noise, as shown in Table S1

and Figure S3. G stands for Gaussian noise of σ = 25, P
stands for Poisson noise n ∼ Poi(x) − x where Poi(x)
denotes the Poisson distribution similar to [1], and S stands

for spatially correlated Gaussian noise. The same notations

of P and S are used in Section 4.2 of our main manuscript.

Unlike GI
1×1

+ GD
1×1

, GI
1×1

cannot handle signal-

dependent noise level as shown in Figure 5 of our main

manuscript. As a result, the denoiser followed by GI
1×1

generator in Figure S3b is not appropriate to remove non-

uniform Poisson noise. Meanwhile, in Figure S3e the de-

noiser followed by GI
1×1

+ GD
1×1

outputs images that still

contain noise term of S , since the GI
1×1

+ GD
1×1

tends to

generate artifacts instead of spatially correlated noise, as

shown in Figure 4 of our main manuscript.

S5. Visualizing Generated Noise

Comparison between generated samples and the real-

world noise. Figure S4 visually compares more pseudo-

noisy samples generated by our C2N and ground-truth noise

maps. The proposed C2N can synthesize samples that
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Figure S4: Examples of ground truth noisy image and generated image from our C2N. (a) Clean image, (b) Ground

truth noisy image and (c) its residual noise map, (d) Generated noisy image from the proposed C2N and (e) its residual noise

map. Best with zoomed.

closely resemble ground-truth noise without significant ar-

tifacts.

Latent space interpolation. We also provide a qualita-

tive study on the effects of r, the input random vector of the

generator. We sample two r vectors which generate low and

high level noise and visualize the generated images with in-

terpolated r as following equation, r = (1 − λ)r1 + λr2.

Here, r1 and r2 are the two sampled vectors and λ ∈ [0, 1] is

the interpolation factor. The qualitative results in Figure S5

illustrates that the random vector determines the property of
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Figure S5: Image generation with interpolated r . For the same clean image patch, we interpolate two different r vectors

with a factor λ and obtain the resulting images. Each column is generated using same vector r. The standard deviation of

each residual noise map is displayed in each image. Best with zoomed.

synthesized noise in our C2N framework. In other words,

our approach can learn to generate real-world noise that

corresponds to varying conditions, such as strong or weak

noise from various camera types in the SIDD [2].

S6. Practical Data Constraints in C2N

To apply the generative noise modeling methods in prac-

tical situations, two kinds of data constraints should be fur-

ther considered for better usability. First, due to several

physical limitations [6], it is not feasible to capture an ideal

clean image from the wild. Rather, a long sequence of

aligned noisy images must be captured beforehand [2] to

synthesize the pseudo-clean reference. Thus, only a few

clean images are available from the same scene distribution

of the noisy images in a real situation. Secondly, once the

noise generator is trained on the desired noisy image dis-

tribution PN and clean image distribution PC , it should be

able to produce pseudo-noisy images paired to any clean

image x from different clean image distribution P ′
C to train

a denoising model. Various real-world noisy image datasets

have scenes that differ in many points, such as types and

scales of the contents or illumination, making a model hard

to learn the noise distribution distinct from the domain of

scenes.

The existing generative noise modeling methods [3, 1, 4]

used a large number of samples in PC , and assumed the

external clean image distribution P ′
C for training denoising

network to be the same as PC . Such a setting is possible

only if a sufficiently large noisy and clean image dataset

is given, which is not a practical situation. We examine

whether our method can maintain its usability under this

problem that have not been explored before.

Table S2 shows that our method fairly preserves its per-

formance without collapsing under two data constraints, (1)

where not enough clean images in PC are given to train the

noise generator, (2) where the clean images from different

scene distribution P ′
C are used to train the following de-

noising model. Our method already uses surprisingly small

amount of samples for training the C2N model, compared

to ∼500K image patches of 64×64 size used in the previous

generative noise modeling methods [1, 4]. The C2N model

trained with much smaller amount of clean images in PC

still shows performance comparable to previous unsuper-

vised denoising methods. Also for the case of P ′
C to be dif-

ferent to PC , our C2N can still train the following denoising

model with its generated pseudo-noisy data. Although our

method shows generalization ability in these situations with

data constraints, we believe that further improvement to re-

solve such problems entirely would be an essential topic to

handle in future work.



Number of Samples ∼ PC P ′
C PSNR(dB) SSIM

36K

(100%)

S 34.08 0.909

D 31.72 0.826

B 31.74 0.825

U 31.32 0.803

18K

(50%)

S 33.53 0.882

D 30.68 0.760

B 29.96 0.742

U 29.72 0.741

720

(2%)

S 31.98 0.847

D 29.36 0.745

B 29.27 0.735

U 29.21 0.738

360

(1%)

S 31.84 0.849

D 29.35 0.740

B 29.08 0.733

U 29.24 0.739

Table S2: Denoising performance of our C2N under data

constraints. We use the Urban100 [5] dataset along with

the other datasets mentioned in main manuscript as the sam-

ples of P ′
C . S, D, B, U denote the SIDD, the DIV2K high-

resolution images, the BSD traning images, and the Ur-

ban100, respectively. PC is fixed to S for all experiments.

Evaluation is done on the SIDD validation set.
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