
A. Normalizing Flow Models for Trajectory
Forecasting

In this section, we review some preliminaries on normal-
izing flow based trajectory forecasting models. We refer
readers to [29] for a comprehensive review of normalizing
flows.

Normalizing flows learn a bijective mapping between a
simple base distribution (e.g. Gaussian) and complex tar-
get data distribution through a series of learnable invertible
functions. In this work, we denote the flow model as f✓,
where ✓ represents its learnable parameters. The base dis-
tribution is a multivariate Gaussian Z ⇠ N (0, I) 2 RT⇥2,
which factorizes across timesteps and (x, y) coordinates.
Then, the bijective relationship between Z and S is captured
by the following forward and inverse computations of f✓:

S = f✓(Z; o) ⇠ p✓(S | o), Z = f�1
✓ (S; o) ⇠ PZ (6)

We further impose the structural dependency between S and
Z to be an invertible autoregressive function, ⌧✓, between
the stepwise relative offset of the trajectory and the corre-
sponding z sample [35, 13]:

st � st�1 = ⌧✓(zt; z<t)

The flow model can be trained using maximum likeli-
hood. Because ⌧✓ is autoregressive (zt does not depend on
any zk where k > t), its Jacobian is a lower-triangular ma-
trix, which admits a simple log-absolute-determinant form
[29]. The negative log-likelihood (NLL) objective is

� log p✓(S; o)

=� log
⇣
p(Z)

��det
df✓
dZ

|Z=f�1
✓ (S;o)

���1
⌘

=�
⇣ TX DX

log p(Zt,d)�
TX DX

log

����
@⌧✓
@Zt,d

����
⌘

(7)

Once the model is trained, both sampling and exact infer-
ence are simple. To draw one trajectory sample S, we sam-
ple Z ⇠ PZ and compute S = f✓(Z;o) Additionally, the
exact likelihood of any trajectory S under the model f✓ can
be computed by first inverting Z = f�1

✓ (S; o) and then com-
puting its transformed log probability via the change of vari-
able formula, as in the second line of Equation 7.

B. Toy Example Details
In the example given in Figure 1(a), we simulate a vehi-

cle either going straight or turning right at the intersection.
The vehicle obeys the Bicycle dynamics [23] and uses a
MPC-based controller with intermediate waypoints to guide
it to its goal. In each simulation, the vehicle starts behind
the bottom entrance of the intersection with a fixed initial
position perturbed by white noise, and the simulation ends

when the vehicle reaches its goal. We collect 100 simu-
lations where the vehicle’s final goal is the top exit of the
intersection) and 900 simulations where the vehicle’s final
goal is the right exit of the intersection. They combine into
a training dataset of 1000 trajectories. Each trajectory is of
100 simulation steps. We downsample it by a factor of 10
and use the first two steps as the history input to the flow
model and the task is to forecast the next 8 steps. With the
first 2 steps “burned” in, the vehicle is exactly at the bottom
entrance of the intersection, creating a bi-modal dataset that
proves to be difficult to model for a normalizing flow model.

After the data collection, we train an autoregressive
affine flow as in Appendix F.3 using the entire dataset until
the log likelihood converges; Then, we sample 100 times
from the flow model using i.i.d unit Gaussian inputs to cre-
ate trajectories as in Figure 1(b). We train a LDS model
with K = 2 on top of this flow model and generate 2 sam-
ples using one Gaussian noise ✏ to generate the trajectories
in Figure 1(c).

C. LDS-CVAE Objective
As shown in our experiments, LDS can also be applied

to CVAE models. Doing so requires changing the NLL
term in the LDS objective (Equation 3 to ELBO. Because
ELBO is a lower bound of the true likelihood, optimizing
for this modified objective would still achieve optimizing
for the original objective. Formally, let q�(Z|o) be the ap-
proximate latent posterior computed from the encoder and
p✓(S|Z) be the likelihood computed from the decoder, we
have

LLDS-CVAE() := ELBO()� �dLd() (8)

where ELBO() = EZ⇠q�(Z|o)[log p✓(S|Z)] �
KL(q�(Z|o)|p(Z)). The Zs fed into CVAE are gen-
erated from r (✏;o), while the prior distribution is
p(Z) ⇠ N (0, I).

D. Transductive LDS Algorithms

Algorithm 2 LDS-TD-NN Training
Input: Flow f✓, Context o

1: Initialize LDS model r
2: for i=1,... do
3: Sample ✏ ⇠ N (0, I)
4: Compute Z1, ...,ZK = r (✏;o)
5: Transform f✓(Z1), .., f✓(ZK)
6: Compute losses using Equations 4 & 5
7: Update w.r.t gradient of Equation 3
8: end for
9: Compute Z1, ...,ZK = r (✏;o)

Output: S = f✓(Z1), .., f✓(ZK)

Algorithm 3 LDS-TD-P Training
Input: Flow f✓, Context o

1: Randomly initialize Z1, ...,ZK ⇠ N (0, I)
2: for i=1,... do
3: Transform f✓(Z1), .., f✓(ZK)
4: Compute losses using Equations 4 & 5
5: Update Z1, ...,ZK w.r.t gradient of Equation 3
6: end for

Output: S = f✓(Z1), .., f✓(ZK)

E. DLow & DSF Details
Our implementations of DLow and DSF utilizes the

same architecture as LDS. The main difference is the loss
functions of the two methods. The DLow objective includes
three terms:

Reconstruction Loss : Er(ŝ) = min
k2K

kŝk � sk2

Diversity Loss : Ed(ŝ) =
1

K(K � 1)

X

i 6=j2K

exp
⇣
� kŝi � ŝjk2

�d

⌘

KL Loss : LKL(z) =
KX

k=1

KL(p (zk|o)||p(zk))

(9)
and the whole objective is:

LDLow() = �rEr + �dEd + �KLLKL

We tune the hyperparameters of DLow and find the follow-
ing setting to work the best: �d = 0.5,�r = 1,�KL = 1,
and �d = 1.

DSF is a bit more involved. First, suppose that given
input o, DSF network learns a set of latent samples
z1, ..., zK , and the flow model decodes them to s1, ..., sK .
DSF constructs a deterministic point process (DPP) kernel
L = Diag(r)·S·Diag(r), where Sij = exp

�
�k·ksi�sjk2

�

for some k > 0. Each entry in the quality vector r is de-
fined as ri = !exp

�
� z>i zi + R2

�
if kzik  R; oth-

erwise, ri = !. R is chosen as the x-th quantile of the
chi-squared distribution with degree of freedom equal to
the dimension of zi. Finally, DSF objective is LDSF() =
�trace(I� (L() + I)�1), and stochastic gradient is back-
propagated with respect to DSF parameters . We choose
k = 1 and x = 90 to be consistent with the original work;
however, we find DSF to be sensitive to these hyperparam-
eter choices and fail to scale to large-dimension tasks (e.g.
Forking Paths).

F. NuScenes Experimental Details
F.1. Dataset Details

NuScenes [4] is a large urban autonomous driving
dataset. The dataset consists of instances of vehicle trajecto-

ries coupled with their sensor readings, such as front camera
images and lidar scans. The instances are further collected
from 1000 distinct traffic scenes, testing forecasting mod-
els’ ability to generalize. Following the official dataset split
provided by the nuScenes development kit, we use 32186
instance for training, 8560 instances for validation, and re-
port results on the 9041 instances in the test set.

F.2. Model Inputs
Model Inputs. All models we implement (AF, CVAE

baseline models and MTP) accept the same set of contextual
information

o = {Lidar scans, velocity, acceleration, yaw}

of the predicting vehicle at time t = 0. Below we visualize
an example Lidar scan and its histogram version [34] that is
fed into the models.

Figure 5: LiDAR inputs in nuScenes.

The Lidar scans are first processed by a pre-trained
MobileNet-v128 [17] to produce visual features. These
features, concatenated with the rest of the raw inputs, are
passed through a neural network to produce input features
for the models.

F.3. Autoregressive Affine Flow Details
Our architecture is adapted from the implementation2

provided in [13]. Here, we describe it in high level and
leave the details to the architecture table provided below.

2
https://github.com/OATML/oatomobile/blob/

alpha/oatomobile/torch/networks/sequence.py

AF consists of first a visual module that transforms the ob-
servation information o into a feature vector h0. Then, h0 is
processed sequentially through a GRU network [8] to pro-
duce the per-step conditioner ht of the affine transforma-
tion: ht = GRU(st, ht�1). Finally, we train a neural net-
work (MLP) on top of ht to produce the modulators µ,� of
the affine transformation:

st � st�1 = ⌧✓(zt; z<t)

= µ✓(s1:t�1,�)| {z }
MLP1(ht)

+ �✓(s1:t�1,�)| {z }
EXP

⇣
MLP2(ht)

⌘
zt (10)

Table 3: AF Architecture Overview

Attributes Values

Visual Module MobileNet(200 ⇥ 200 ⇥ 3, 128)
Linear(128+3,64)
Linear(64,64)
Linear(64,64)

Autoregressive Module GRUCell(64)

MLP Module ReLU � Linear(64,32)
Linear(32, 4)

Base Distribution N (0, I)

F.4. CVAE Details

Our CVAE implementation is adapted from the imple-
mentation3 in [41]. It takes the same set of inputs as our
AF model except the addition of a one-frame history in-
put. The history is encoded using a GRU network of hidden
size 64 to produce h0, which is then concatenated with the
rest of the inputs. This concatenated vector is then encoded
through a 2-layer fully-connected network. To encode the
future, our CVAE model uses a GRU network of the same
architecture as the GRU encoder for the history. Finally, the
encoded input and output (i.e. future) is concatenated and
passed through another 2-layer network to give the mean
and the variance of the approximate posterior distribution.
For the decoder, we first sample a latent vector z using the
reparameterization trick. Then, z is concatenated with the
encoded inputs to condition the per-step GRU roll-out of
the reconstructed future. The model is trained to maximize
ELBO.

3
https://github.com/Khrylx/DLow/blob/master/

models/motion_pred.py

Table 4: CVAE Architecture Overview

Attributes Values

History Encoder GRU(2, 64)
Visual Module MobileNet(200 ⇥ 200 ⇥ 3, 128)

Full Input Encoder Linear(128+64+3, 64)
Linear(64, 64)
Linear(64, 64)

Full Output Encoder GRU(2, 64)

Input Output Merger Linear(64+64, 64)
Linear(64, 32+32)

µ,� R32,R32

Decoder GRU(2+32+64, 64)
Linear(64, 64)
Linear(64, 32, 2)

F.5. LDS Architecture Details

LDS r is a single multi-layer neural network with K
heads, the number of modes pre-specified. To ensure stable
training, we clip the diversity loss to be between [0, 40] for
K = 5 and [0, 30] for K = 10. DSF and DLow use the
same architecture as LDS.

Table 5: LDS Architecture and Hyperparameters Overview

Attributes Values

LDS Architecture Linear(Input Size, 64)
Linear(64,32)
Linear(32, 2 ⇥ T ⇥ K)

Learning Rate 0.001
�d 1
Diversity function clip value 40/30

F.6. Training Details

We train the “backbone” forecasting models AF, CVAE,
MTP-Lidar for 20 epochs with learning rate 10�3 using
Adam [20] optimizer and batch size 64. LDS-AF iterates
through the full training set once, while LDS-AF-TD di-
rectly optimizes on the test set with a minibatch size of 64
and 400 adaptation iterations for every minibatch. For all
LDS models, we set �d = 1 and do not experiment with fur-
ther hyperparameter tuning. LDS training also uses Adam.
For all models, we train 5 separate models using random
seeds and report the average and standard deviations in our
results.

F.7. Additional Results

Comparison with Trajectron++ To test the limit of our
approach, we additionally compare against Trajectron++
[36]. Different from other baselines we include in the
main paper, Trajectron++ utilizes additional inputs such
as spatio-temporal graph and vehicle/pedestrian dynamics
and evaluates on a shorter horizon (i.e. 8 frames). Here,
we re-train an AF model by truncating all trajectories to 8
frames, and then train a LDS model on top, giving us LDS-
AF-8. Trajectron++ only reports minFDE10 and obtains
2.24. LDS-AF-8 obtains minFDE10 : 2.28,minADE10 :
1.09,minASD10 : 2.18,minFSD10 : 5.80, where we
include the other three metrics for completeness. As
shown, LDS-AF-8 is slightly worse than Trajectron++ on
minFDE10; however, giving that the backbone model LDS
utilizes here is a much weaker model than Trajectron++.
this result is encouraging and suggests that even a weak
model can produce competitive predictions when it is aug-
mented with an effective sampling mechanism.

minASD vs. meanASD. Here, we illustrate the robustness
of minASD compared to meanASD. Consider the follow-
ing two sets of 10 predictions. In the first set, the pairwise
distance between all pairs is exactly 1. In the second set, 9
predictions are identical, but their distance to the remaining
one is 100. The first set achieves identical diversity value
1 under the two metrics, whereas the second set achieves 0
minASD but 20

9 meanASD. Therefore, we might incorrectly
conclude that the second set is more diverse if we were to
solely rely on mean metrics for diversity.

Mean diversity results. Here, we report the meanASD
and meanFSD metrics for diversity. As shown, LDS still
achieves the highest diversity on these metrics and provide
greater diversity boost than DLow; however, the relative dif-
ferences among models are much smaller. Additionally, by
examining the tables from K = 5 to K = 10, we no longer
find the pattern that LDS being the only model whose diver-
sity does not deteriorate as we did in Table 1 (Right). This is
because the mean metric only captures the average behavior
and not the worst case behavior. Thus, our hypothesis that
the min metrics are more informative than the mean metrics
are supported by the following results.

Method Samples meanASD (") meanFSD (")
MTP-Lidar-5 5 5.74 ± 0.79 13.80 ± 2.00
CVAE 5 5.38 ± 0.09 12.28 ± 0.16
DLow-CVAE 5 6.66 ± 0.21 15.43 ± 0.44
AF 5 6.21 ± 0.02 14.48 ± 0.04
DLow-AF-5 5 7.41 ± 0.29 17.90 ± 0.67
LDS-AF-5 5 7.89 ± 0.29 19.06 ± 0.58

Method Samples meanASD (") meanFSD (")
MTP-Lidar-10 10 5.24 ± 0.30 12.71 ± 0.59
CVAE 10 5.38 ± 0.10 12.28 ± 0.18
DLow-CVAE 10 6.96 ± 0.20 16.16 ± 0.45
AF 10 6.21 ± 0.01 14.48 ± 0.04
DLow-AF-10 10 7.88 ± 0.57 19.49 ± 1.36
LDS-AF-10 10 7.90 ± 0.28 19.71 ± 0.74

Table 6: NuScenes prediction mean diversity results.

F.8. Additional Ablation Results
In this section, we provide some additional ablation stud-

ies to further understand the effectiveness of LDS. First, we
aim to understand: how sensitive is LDS to the quality
of the underlying flow model? To answer this question,
we train an additional AF model with half the number of
epochs as the original one (AF�), and then train LDS as
before. The comparisons are shown in Table 7. With only
half the training time, AF� performs considerably worse
than AF, yet LDS is still able to provide a significant per-
formance boost, achieving 33% reduction in both minADE
and minFDE. This reduction is greater than that of LDS ap-
plied to the stronger AF model (27%), suggesting the utility
of LDS is greater for weaker pre-trained model and high-
lighting that its overall effectiveness is robust to the quality
of the underlying flow.

Method S mADE5 #% mFDE5 #% minASD "% minFSD "%

AF� 5 3.49 ± 0.16 - 7.79 ± 0.41 - 1.99 ± 0.15 - 4.58 ± 0.46 -
LDS-AF� 5 2.31 ± 0.19 34% 5.17 ± 0.39 34% 2.91 ± 0.05 146% 8.25 ± 0.32 180%
LDS-AF�-TD 5 2.35 ± 0.16 33% 5.24 ± 0.33 33% 3.00 ± 0.16 151% 8.36 ± 0.14 183%

AF 5 2.86 ± 0.01 - 6.26 ± 0.05 - 1.58 ± 0.02 - 3.75 ± 0.04 -
LDS-AF 5 2.06 ± 0.09 28% 4.67 ± 0.25 25% 3.13 ± 0.18 98% 8.19 ± 0.26 118%
LDS-AF-TD 5 2.06 ± 0.02 28% 4.62 ± 0.07 26% 3.09 ± 0.07 95% 8.15 ± 0.17 117%

Table 7: LDS ablations on the pre-trained flow models.

LDS training stability. We track the state of minADE
and minASD on the mini nuScenes validation set over
the course of LDS training. On the mini version of the
nuScenes dataset, we train a LDS-AF (K = 5) model, and
for every training iteration, we compute the current LDS-
AF model’s minADE and minASD on the mini validation
set. The mini version is a much smaller dataset with only
1000 instances, making this procedure manageable. The se-
quence of (ASD, ADE) pairs are traced as a trajectory on a
2D plane, where the x-axis corresponds to minASD5 and
the y-axis corresponds to minADE5.

The entire trajectory is visualized in Figure 6. We addi-
tionally visualize both minADE and minASD individually
over the course of training in the middle and the right pan-
els. In all three plots, the initial AF model’s (ASD, ADE)
point is colored in red, and the final LDS-AF’s (ASD,ADE)
point is colored in blue. Focusing on the left panel, we

Figure 6: Left: LDS (ASD, ADE) plot on nuScenes mini. LDS offers stable and fast improvements to flow outputs in both
accuracy and diversity during its training. Middle: LDS ADE over the course of training. Right: LDS minASD over the
course of training.

note that the initial point at the top left corner represents
the ADE/ASD of the pre-trained flow backbone, which
has relatively high error and low diversity. However, LDS
quickly discovers good sampling distribution and offers fast
and near “monotonic” improvements along both axis. This
provides evidence that the joint objective is effective and
helps avoiding potential local minima in the loss landscape.
The rapid improvement early on in training also explains
why LDS’s transductive adaptation procedure can be effec-
tive. Finally, an early stopping mechanism may be effective
given the fast convergence to the optimum (i.e. the bottom
right corner); we leave it to future work to investigate the
precise stopping criterion.

Dependence on ✏. One may eliminate the dependence
on ✏ by making the mapping procedure deterministic:
{Z1, ...,ZK} = r (o). In theory, this simplified formu-
lation should optimize for the same objective as the objec-
tive itself does not explicitly depend on ✏. However, in
practice, we find this ablation reduces performance as the
trained LDS model may be overfitting to some determinis-
tic set of trajectories to multiple different inputs. We report
the average results over 5 seeds on LDS-AF for K = 10
where we do not utilize the ✏ sampling procedure (Step 3
and 4 in Algorithm 1): minADE10 : 1.74,minFDE10 :
3.73,minASD10 : 2.06,minFSD10 : 6.03. These results are
slightly worse than the original LDS-AF results reported in
Table 1. Therefore, we confirm that adding innate stochas-
ticity to the training procedure with ✏ boosts performance,
validating our original formulation.

Mismatched K. Here, we perform a controlled experi-
ment analyzing LDS outputs when the number of samples
K it learns to output mismatches the number of modes in
the underlying distribution. To do this, we return to our toy
intersection environment as in Figure 1(a). Instead of train-
ing a LDS with K = 2 as done in Figure 1(c), we train
one with K = 5. This LDS’s set of 5 samples are shown

in Figure 7. Among the 5 trajectories, the two modes are
still captured. Importantly, the major mode (turning right)
is captured twice. However, the remaining two trajectories
represent the average of the two modes and correspond to
potentially unrealistic behaviors. Note that this set of five
trajectories would achieve very low minADE errors in both
single and multiple-future evaluations, since at least one tra-
jectory in the predictions is close to both modes. However,
for planning settings, this set of predictions may not be op-
timal. Hence, choosing K carefully is important in practice,
and we leave it to future work for further investigations.

Figure 7: LDS outputs for K = 5.

F.9. Additional Visualizations

LDS-AF vs. AF vs. MTP-Lidar. Additional visualizations
of LDS-AF, AF, and MTP-Lidar outputs (Figure 10).

LDS-AF vs. LDS-AF-TD-NN. Visualizations of LDS-AF
(red) vs. LDS-AF-TD-NN (blue) are provided in Figure 8.
As shown, LDS-AF-TD-NN generally adapt its predictions
to the current observation better and produce more realistic
trajectories with respect to the ground truth.

Varying ✏. Finally, we visualize different sets of LDS-AF

trajectories by randomly sampling different ✏ ⇠ N (0, I).
The visualizations are in 9.

G. Forking Paths Experimental Details
G.1. Dataset Details

Here, we briefly describe the Forking Paths evalua-
tion dataset [25]. FP semi-automatically reconstruct static
scenes and their dynamic elements (e.g. pedestrians) from
real-world videos in ActEV/VIRAT and ETH/UCY in the
CARLA simulator. To do so, it converts the ground truth
trajectory annotations from the real-world videos to coordi-
nates in the simulator using the provided homography ma-
trices of the datasets. Then, 127 “controlled agents” (CA)
are selected from the 7 reconstructed scenes. For each CA,
there are on average 5.9 human annotators to control the
pedestrian to the pre-defined destinations in a “natural” way
that mimics real pedestrian behaviors. The scenes are also
rendered to the annotators in different camera angles rang-
ing from ‘Top-Down’ to ‘45-Degree’. The annotation can
last up to 10.4 seconds, which is far longer than the 4.8 sec-
onds prediction window in the original datasets, making the
forecasting problem considerably harder. In total, there are
750 trajectories after data cleaning.

G.2. CAM-NF Model Details
Compared to the perception-based flow model we use

in nuScenes, CAM-NF only uses the historical trajectory
of the agent and other surrounding agents in the scene,
consistent with various prior methods [15, 1] in pedestrian
forecasting; we leave exploring the utility of added per-
ception modules as in [26, 25] to future work. Hence,
o = {Sa

�Thist:0
}Aa=1, where A is the number of pedestrians

in the scene and Thist the length of history. CAM-NF first
encodes the history of all pedestrians in the scene using a
LSTM encoder. Then, it computes cross-pedestrian atten-
tion feature vectors using self-attention [39] to model the
influences of nearby pedestrians, and uses these attention
vectors as features for a normalizing flow decoder, which
outputs future trajectories of the predicted pedestrian. The
decoder is an autoregressive affine flow similar to the one
used for nuScenes. Here, we briefly describe the architec-
tures and refer interested readers to the original work.

The encoder first uses an LSTM of hidden dimension
512 [16] to extract a history embedding for every agent up
to the most recent timestep t = 0:

ha
t = LSTM(sat�1, h

a
t�1) t = Thist � 1, ..., 0

Then, the history embedding of all agents h0
t , ..., h

A
t are ag-

gregated to compute a corresponding cross-agent attention
embedding using self-attention. This embedding is then
combined with the history embedding to form the inputs

to the normalizing flow decoder:

h̃a = ha
0 + SELF-ATTENTION(Qa,K,V)

where (Qa,Ka, V a) is the query-key-value triple for each
agent, and the bold versions are their all-agent aggregated
counterparts. Note that h̃a is passed through a linear layer
of hidden dimension 256 before passed to the decoder.

The decoder is similar to the autoregressive affine flow
used for nuScenes with a few minor changes. First, �✓ 2
R2⇥2 to model correlation between the two dimensions
(i.e. x, y) of the states. Second, a velocity smoothing term
↵(st�1 � st�2) is added to the step-wise update. That is,

st � st�1 = ⌧✓(zt; z<t)

= ↵(st�1 � st�2) + µ✓(s1:t�1,�)| {z }
MLP1(ht)

+ �✓(s1:t�1,�)| {z }
EXP

⇣
MLP2(ht)

⌘
zt

(11)
We set ↵ = 0.5 as in the original work. Our implementation
is adapted from the original implementation4.

G.3. LDS Architecture Details
Since trajectories in FP have different lengths, we set

T = 25 in the LDS architecture to ensure that a bijective
mapping between Z 2 RT⇥D exists for all samples in FP.
This also means that during training, we optimize LDS for
up to 25 steps. We also slightly increase the size of LDS
neural network and set the maximum diversity loss to be 80,
which we find to work well empirically. As before, DLow
and DSF use the same architecture as LDS. The whole ar-
chitecture is as follows:

Table 8: LDS Architecture and Hyperparameters Overview

Attributes Values

LDS Architecture Linear(Input Size, 128)
Linear(128,64)
Linear(64, 2 ⇥ 25 ⇥ K)

Learning Rate 0.001
�d 10
Diversity function clip value 80

G.4. Training Details
We train CAM-NF for 200 epochs with learning rate

10�3 using Adam optimizer and batch size 64. We train
LDS, LDS-TD, and DLow models using mode hyperparam-
eter K = 20. LDS and DLow iterate through the full train-
ing set once, while LDS-AF-TD directly optimizes on the
test set with a minibatch size of 64 and 200 adaptation it-
erations for every minibatch. For all LDS models, through

4
https://github.com/kami93/CMU-DATF

a hyperparameter search , we set �d = 10. For all models,
we train 5 separate models using random seeds and report
the average and standard deviations.

G.5. ActEV/VIRAT Results

Method minADE1(#) minFDE1(#)
Linear⇤ 32.19 60.92
LSTM⇤ 23.98 44.97
Social-LSTM⇤ 23.10 44.27
Social-GAN⇤ 23.10 44.27
Next⇤ 19.78 42.43
Multiverse⇤ 18.51 35.84
CAM-NF 19.69 ± 0.15 39.12 ± 0.31

Table 9: Training Results on ActEV/VIRAT. Our backbone
flow model CAM-NF achieves comparable performance to
the current state-of-art Multiverse.

G.6. Forking Paths Full Sub-Category Split Results

Method minADE20(#) minFDE20(#)
45-Degree Top Down 45-Degree Top Down

Linear⇤ 213.2 197.6 403.2 372.9
LSTM⇤ 201.0 ± 2.2 183.7 ± 2.1 381.5 ± 3.2 355.0 ± 3.6

Social-LSTM⇤ [1] 197.5 ± 2.5 180.4 ± 1.0 377.0 ± 3.6 350.3 ± 2.3
Social-GAN⇤ [15] 187.1 ± 4.7 172.7 ± 3.9 342.1 ± 10.2 326.7 ± 7.7

Next⇤ [26] 186.6 ± 2.7 166.9 ± 2.2 360.0 ± 7.2 326.6 ± 5.0
Multiverse⇤ [25] 168.9 ± 2.1 157.7 ± 2.5 333.8± 3.7 316.5 ± 3.4
CAM-NF [30] 155.2 ± 2.4 140.8 ± 2.2 305.0 ± 4.6 282.2 ± 4.9

DSF [40] 169.7 ± 1.8 155.77 ± 2.1 331.7 ± 3.7 309.5 ± 3.5
DLow [41] 144.5 ± 3.8 131.0 ± 8.1 284.6 ± 8.4 262.1 ± 20.5
LDS (Ours) 103.8 ± 6.9 93.4 ± 4.8 190.6 ± 16.3 173.4 ± 12.8

LDS-TD-NN (Ours) 105.1 ± 4.3 94.9 ± 2.1 188.7 ± 10.4 167.4 ± 4.8

Table 10: Evaluation results on Forking Paths. LDS-
augmented CAM-NF significantly outperforms all other
methods, including Multiverse and DLow-augmented
CAM-NF.

G.7. Additional Analysis on Forking Paths
As shown in Table 2, compared to nuScenes experi-

ments, LDS exhibits larger improvement over DLow on
the FP dataset. We believe that this is because the ground
truth futures in the FP test set tend to be longer than in the
ActEV/VIRAT training set. Since DLow optimizes for the
L2 reconstruction loss between its forecasts and the ground-
truth future trajectories in the training set, it is limited to
improving diversity over the horizon of these training tra-
jectories. Thus, it is unable to produce diverse predictions
for longer horizon trajectories, such as those in the test set.
In contrast, since LDS directly optimizes the likelihood of
future trajectory according to the flow model, it does not
rely on ground truth futures. Thus, it can improve diversity

over much longer time horizons than in the training data.
This contrast further highlights the flexibility of LDS. Fi-
nally, we note that we were not able to achieve positive re-
sults for DSF; this is likely due to the much larger latent
sample dimension (2 ⇥ 20 = 40) for this dataset, which as
stated in Section 2, would be an issue for DSF.

G.8. Additional Visualizations
In this section, we provide some additional visualiza-

tions of LDS, CAM-NF, and Multiverse outputs (Figure 11).

Figure 8: LDS-AF (red) vs. LDS-AF-TD-NN (blue) in NuScenes.

Figure 9: Effect of varying ✏ on LDS-AF in NuScenes. The three colors (red, blue, orange) denote three different sets of
trajectories by randomly sampling ✏.

LDS (Ours) AF MTP

Sc
en

e
1

Sc
en

e
2

Sc
en

e
3

Sc
en

e
4

Figure 10: Additional model visualizations. The models from left to right: LDS, AF, and MTP-Lidar.

LDS (Ours) CAM-NF Multiverse

Sc
en

e
1

Sc
en

e
2

Sc
en

e
3

Sc
en

e
4

Figure 11: Additional model visualizations. The models from left to right: LDS, CAM-NF, and Multiverse.

