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1. Additional Implementation Details

We provide some additional implementation details
regarding network architectures, data augmentations, and
evaluation protocol.

Network Architectures. We noticed some inconsistencies
regarding the definition of the 3D-ResNet architecture used
in prior works. Our 3D-Resnet architecture is identical
to the one used in [10, 11, 13] with the first two residual
blocks consisting only of 2D convolutions and the final
two blocks consisting of 3D convolutions. The R(2+1)D
and S3D-G architectures are identical to the original works

[26, 29].

Data Augmentation Details. Our temporal augmentations
consist of 1) choosing a temporal subsampling factor cor-
responding to 1x, 2x, 4x or 8x playback, 2) randomly
choosing forward or backward playback with equal proba-
bility 3) randomly sampling k consecutive frames satisfying
the constraints of steps 1 and 2.

We use a standard augmentation pipeline for the spatial
and color jittering as found in contrastive learning meth-
ods [5]. Concretely, we sample crops with an area covering
0-times the original area, with & chosen randomly in the
range [0.2,1.0]. Similarly, the crop aspect ratio is chosen
randomly from the range [3/4, 4/3]. Finally, we apply ran-
dom horizontal flipping with a probability of 0.5.

Color jittering consists of random modifications of
brightness, saturation, hue, and contrast. These random
modifications are performed in random order to add more
variability. Finally, we randomly convert videos to grey-
scale with a probability of 0.2. All the spatial and color
jitterings are applied consistently to all frames of the video.
We do not use random Gaussian blur in our experiments.

Evaluation Details. As mentioned in Section 3.4, we per-
formed a multi-crop evaluation with a combination of tem-
poral and spatial crops. We followed the same approach as
[12] and uniformly sampled ten temporal crops and addi-

tionally extracted ten spatial crops each (i.e., center crops
+ four corner crops and each also with horizontal flipping).
Spatial crops were extracted at a resolution of 176 x 176
for R(2+1)D and 192 x 192 for R3D-18 and S3D-G (ad-
justing for the different pre-training resolutions). Since av-
eraging over more crops can impact the final performance
and not all the prior works follow this protocol, we also in-
clude numbers obtained with only a single spatial crop in
the extended comparison Tables 1 & 2.

2. Additional Results

Qualitative Nearest-Neighbor Results. We illustrate
some qualitative nearest neighbor retrievals on UCF101
obtained with the R3D-18 network in Figure 1. The nearest
neighbor computation is again based on cosine similarity
on standardized feature vectors, as described in Section 3.4.
The sensible retrievals reflect the excellent performance in
the video retrieval evaluation (see Table 2).

Additional Comparisons to Prior Work. We report ad-
ditional comparisons in transfer towards action recognition
in Table 1. We include results obtained with an R(2+1)D
using UCF101 pre-training in the top block, observing im-
provements over prior works in the same setting. Addition-
ally, we report results obtained without using multiple spa-
tial crops, allowing for a fairer comparison to prior works
using only single spatial crops.

Finally, we report additional comparisons on the video
retrieval task in Table 2. Besides the single crop evalu-
ation, we also report performance obtained with Kinetics
pre-training for completeness.
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Figure 1. Qualitative nearest-neighbor retrievals on UCF101. We show three frames from a query video on the left (taken from UCF101
test split 1), followed by the three nearest neighbors from the training set (train split 1). Nearest neighbors are computed using cosine
similarity in the feature space of a 3D-ResNet pre-trained using our proposed self-supervised learning task.



Table 1. Extended comparison to prior work on self-supervised video representation learning. We report action recognition accuracy
after fine-tuning to UCF101 and HMDBS51. We indicate the pre-training dataset, input resolution, number of input frames, network
architecture, and pre-training data modality (V=RGB, F=optical-flow, A=audio, T=text). In the upper block we compare to other methods
with an R(2+1)D network when pre-training on UCF101. We also report numbers obtained with single spatial crop evaluation since not all
methods perform inference using multiple spatial crops.

Method Dataset Res. Frames Network Mod. UCF101 HMDBS51
VCP [18] UCF101 112 16 RQ2+1)D v 66.3 32.2
PRP [32] UCF101 112 16 RQ2+1)D A" 72.1 35.0
VCOP [30] UCF101 112 16 R(2+1)D A" 72.4 30.9
STS [27] UCF101 112 16 RQ2+1)D \'% 73.6 34.1
Var. PSP [0] UCF101 112 16 RQ2+1)D \" 74.8 36.8
Pace Pred. [28] UCF101 112 16 RQ2+1)D \% 75.9 35.9
Temp.-Trans. [13] UCF101 112 16 RQ2+1)D A% 81.6 46.4
TCRL [7] UCF101 112 16 RQ2+1)D A" 82.8 53.6
Ours (1-crop) UCF101 112 16 R2+1)D \'% 85.2 56.9
Ours (10-crop) UCF101 112 16 RQ2+1)D A% 85.8 59.3
3D ST-puzzle [15] Kinetics-400 224 16 R3D-18 A" 65.8 33.7
3D RotNet [14] Kinetics-400 112 16 R3D-18 A% 66.0 37.1
STS [27] Kinetics-400 112 16 R3D-18 A" 68.1 344
Temp.-Trans. [13] Kinetics-400 112 16 R3D-18 \% 79.3 49.8
DPC [10] Kinetics-400 224 40 R3D-34 A% 75.7 35.7
MemDPC [11] Kinetics-400 224 40 R3D-34 A% 78.1 41.2
Pace Pred. [28] Kinetics-400 112 16 R2+1)D A" 77.1 36.6
VideoMoCo [21]  Kinetics-400 112 16 RQ2+1)D v 78.7 49.2
VideoDIM [8] Kinetics-400 128 32 RQ2+1)D \" 79.7 49.2
TCRL [7] Kinetics-400 112 16 RQ2+1)D \'% 84.3 54.2
CBT [24] Kinetics-600 112 16 S3D A" 79.5 44.6
SpeedNet [3] Kinetics-400 224 64 S3D-G \% 81.1 48.8
VTHCL [31] Kinetics-400 224 8 R50 A% 82.1 49.2
TaCo [2] Kinetics-400 224 16 R50 A" 85.1 51.6
CVRL [23] Kinetics-400 224 32 R3D-50 A" 92.1 65.4
DynamoNet [9] YoutubeSM 112 32 STCNet A\ 88.1 59.9
STS [27] Kinetics-400 224 64 S3D-G  V+F 89.0 62.0
CoCRL [12] Kinetics-400 128 32 S3D V+F 87.9 54.6
AVTS [16] Kinetics-400 224 25 MC3 V+A 85.8 56.9
XDC[1] Kinetics-400 224 8 RQ2+1)D V+A 84.2 47.1
GDT [22] Kinetics-400 112 32 RQ2+1)D V+A 89.3 60.0
MIL-NCE [19] HowTol0OM 224 32 S3D V+T 91.3 61.0
Ours (1-crop) Kinetics-400 128 16 R3D-18 A" 85.5 60.9
Ours (1-crop) Kinetics-400 112 16 R(2+1)D v 87.1 59.8
Ours (1-crop) Kinetics-400 128 32 S3D-G A% 86.3 58.6
Ours (10-crop) Kinetics-400 128 16 R3D-18 \" 87.1 63.6
Ours (10-crop) Kinetics-400 112 16 RQ2+1)D A% 88.2 62.2
Ours (10-crop) Kinetics-400 128 32 S3D-G \" 86.9 63.5
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Table 2. Extended comparison on the video retrieval tasks on UCF101 and HMDB51. We report recall at £k (R@k) for k-NN based
video retrieval. Query videos are taken from test split 1 and retrievals computed on train split 1 of UCF101 and HMDB, respectively. *
indicates Kinetics pre-training. We also report results when using a single spatial crop to extract feature vectors (instead of averaging over
ten spatial crops).
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UCF101 HMDBS51

Method Network R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20
Jigsaw [20] AlexNet 19.7 28.5 335 40.0 - - - -
OPN [17] AlexNet 19.9 28.7 340 40.6 - - - -
Biichler et al. [4] AlexNet 257 362 422 49.2 - - - -
STS [27] C3D 30.1 496 58.8 67.6 13.9 333 447 59.5
Pace Pred. [28] C3D 319 497 592 68.9 125 322 454 61.0
PRP [32] R3D-18 22.8 38.5 46.7 55.2 - - - -
VCOP [30] R3D-18 14.1 303 404 51.1 7.6 229 344 48.0
VCP [18] R3D-18 18.6 33.6 425 53.5 7.6 244  36.6 53.6
Var. PSP [6] R3D-18 246 419 51.3 62.7 103 266  38.8 51.6
PCL [25] R3D-18 405 594 689 77.4 16.8 384 534 68.9
MemDPC [11] R3D-18 202 404 524 64.7 7.7 257 40.6 57.7
Temp.-Trans. [13]* R3D-18 26.1 48.5 59.1 69.6 - - - -
SpeedNet [3]* S3D-G 13.0 28.1 37.5 49.5 - - - -
CoCRL [12] S3D 533 694 76.6 82.0 232 432 535 65.5
TCRL [7] R2+1)D 569 722 79.0 84.6 24.1 458 583 75.3
GDT [22]* RQ2+1)D 574 734 808 88.1 254 514 639 75.0
Ours (1-crop) R3D-18 625 78.4 84.1 88.8 320 608 722 81.7
Ours (1-crop) RQ2+1)D 646 80.8 85.8 90.5 29.7 537 66.9 77.8
Qurs (10-crop) R3D-18 63.6 79.0 8438 89.9 322 603 716 81.5
Qurs (10-crop) R2+1)D 643 809 864 90.6 205 558 68.0 78.2
Ours (1-crop)* R3D-18 669 83.1 88.8 93.3 36.4 64.1 74.1 83.8
Ours (1-crop)* RQ2+1)D 642 81.0 87.6 924 332 59.7 724 82.9
Ours (10-crop)* R3D-18 67.8 83.7 88.9 93.7 380 652 759 83.2
Qurs (10-crop)* R2+1)D 642 8l1.1 87.4 92.6 33.1 608 73.1 84.1
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