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1. Background: Transformer model
Our HORT model employs both intra- and inter- trans-

formers. Here, we will describe the intra-transformer,
which essentially has the same architecture as the original
transformer from [6]. As discussed in the primary text, the
inputs for the transformers are as follows:

O′i,t = WT
o Oi,t + PE(boi,t),Wo ∈ Rdo×dTx (1)

R′j,t = WT
r Rj,t + PE(brj,t),Wr ∈ Rdr×dTx (2)

P ′k,t = WT
p Pk,t + PE(bpk,t),Wp ∈ Rdp×dTx (3)

For simplicity, we denote d = dTx across this section.
The transformer (intra-transformer) is a composition of

an encoder and a decoder, each of which consists of L trans-
former blocks with parameters fθL ◦ · · · ◦ fθ1(x) ∈ Rn×d
for n objects of dimension Rd. A transformer block is a
parameterized function class fθ : Rn×d → Rn×d. For in-
put x ∈ Rn×d, we compute fθ(x) = z over each of the L
blocks.

Both the encoder layer and decoder layer contain simi-
lar sub-modules of multi-head attention, feed-forward net-
works (FFN), and LayerNorms, but differ in regard to the
input of the multi-head attention sub-layer. Each decoder
layer involves an additional multi-head attention sub-layer,
where the queries come from the output of the previous en-
coder layer, and the keys and values are from the encoder
output, which is named the encoder memory.

Below we will describe the architecture of each trans-
former block in the encoder. For each of the L blocks, we
have a matrix Q of queries, K of keys, and V of values.
A transformer block contains H parallel heads, indexed
h ∈ {1, 2, ...,H}. Thus, in transformer block i and head
h, we have the following Q, K, and V matrices:

Qh(xi) = WT
h,qxi,Wh,q ∈ Rd×k (4)

Kh(xi) = WT
h,kxi,Wh,k ∈ Rd×k (5)

Vh(xi) = WT
h,vxi,Wh,v ∈ Rd×k, (6)

where k = d/H . We can use the queries, keys, and values
to compute the attention weights ah,ij on head h between

transformer blocks i and j.

ah,ij = softmaxj(
Qh(xi) ·Kh(xj)√

k
) (7)

where softmaxj means to take the softmax over the d-
dimensional vector indexed by j. We can now use the at-
tention weights to further compute the intermediary value
ui.

ui =

H∑
h=1

WT
c,h

n∑
j=1

ah,ijVh(xj) (8)

where Wc,h ∈ Rk×d. xi is added to the attention layer
output ui as a skip connection. We then apply LayerNorm
[1], a feed-forward network containing two linear projec-
tions with a ReLU operation between them, and LayerNorm
again, to get the final value zi, the output of transformer
block i.

2. Qualitative results
See Figure 1 for qualitative results of our HORT model

on Action Genome. In the first row, the person has changed
his body posture and the objects he is interacting with. Note
that our model less frequently detects the laptop when it is
not involved in any interaction. The model also correctly
classifies the different relationships between the person and
the bed across time (when a person is lying on the bed by
his body side, the ground truth label for spatial relationship
is 〈bed - on the side of - person〉).

In the second row, our model correctly predicts the
change of the contacting relationship between the person
and the box. Occasionally the model makes a mistake in
object detection, such as wrongly detecting a pillow in the
fourth frame.

The video in the last row suffers from bad lighting con-
ditions, where the chair can hardly be seen only by appear-
ance. However, with the contextual information from the
laptop, table, and the human pose, our model infers the ex-
istence of the chair in most frames. Moreover, although the
shelf at the top of the frame is a clearly unobstructed object,



Figure 1: Qualitative results of our HORT model on Action Genome. Despite the imperfection in wrongly detected objects
or misclassified relationships, our HORT model can spot interacted objects and infer the temporal dynamics of human-object
relationships.



Table 1: Evaluation of scene graph generation on Action Genome with single-relationship constraint. In this experiment, we
follow the same single-relationship constraint and use the same cross entropy loss as in [2]. All results of previous baselines
are from [2]. Our HORT model still outperforms all baselines in this setting.

Method
PredCls SGCls SGGen

image video image video image video
R@20 R@50 R@20 R@50 R@20 R@50 R@20 R@50 R@20 R@50 R@20 R@50

VRD [5] 14.75 14.85 14.51 14.60 13.65 14.69 13.41 14.44 10.28 10.94 10.04 10.70
Freq Prior [9] 32.70 32.84 32.25 32.37 31.52 32.78 31.08 32.32 24.03 24.87 23.49 24.31
IMP [7] 35.15 35.56 34.50 34.86 31.73 34.85 31.09 34.16 23.88 25.52 23.23 24.82
MSDN [4] 35.27 35.64 34.61 34.93 31.89 34.98 31.28 34.28 24.00 25.64 23.39 24.95
Graph R-CNN [8] 35.36 35.74 34.80 35.12 31.94 35.07 31.43 34.46 24.12 25.77 23.59 25.15
RelDN [10] 35.89 36.09 35.36 35.51 33.47 35.84 32.96 35.27 25.00 26.21 24.45 25.63
HORT 35.94 36.11 35.43 35.57 34.13 35.97 33.64 35.45 25.45 26.35 24.91 25.80

(a) (b) (c)

Figure 2: Typical failure cases: (a) biased co-occurrence of ob-
jects: chairs and tables often co-occur so the model is biased to-
wards predicting such a combination; (b) biased relationships: the
person is actually not looking at television while most examples in
the training set are 〈person - looking at - television〉;
(c) confused object detection: blankets and towels are often mis-
classified as their training examples are very similar.

because the person is not interacting with it, our model does
not include the shelf in the output.

We also demonstrate examples of typical failure cases in
Figure 2. We have observed three types of common failures.
Biased co-occurrence of objects. Some combinations of
objects appear frequently in the training set, thus the model
lean to predict such objects together, e.g. chairs and tables.
In Figure 2(a), although there is no table in the scene, the
model has mistakenly inferred its existence, probably based
upon the human pose, the chair and the box.
Biased relationships. When the training set contains too
many certain relationships on an object, the model often
fails to predict other possible relationships. For example,
when a person is watching the TV while occasionally turns
his head away, it is hard for the model to capture such a
change without enough training examples or an auxiliary

gaze detection model.
Confused object detection. A dataset may have differ-
ent labels on very similar objects. For instance, in Action
Genome, “towel” and “blanket” is often hard to distinguish.
The object detector can be confused in training, which re-
sults in mistakes in the overall HOR detection.

3. HOR detection in Action Genome

Careful readers may have noticed that in the Table 1
of the main text, our reported performance of scene graph
generation baselines is universally better than baselines re-
ported in Action Genome [2]. This is due to the following
reasons:

1. The original baselines were restricted to output only
one relationship label for each human-object pair. This
is a typical setup in scene graph generation exper-
iments on Visual Genome [3], while the restriction
should be removed for Action Genome HOR detection
as multiple relationships can co-exist between each
human-object pair.

2. To allow the models to learn from multiple relation-
ships between each pair, we have changed the relation-
ship score activation from softmax to sigmoid and re-
placed the cross entropy loss to binary cross entropy
loss accordingly.

We have applied these changes to all baselines and our
model for fair comparisons.

As a reference, we have also trained and tested our
HORT model with a cross entropy loss and the single-
relationship constraint, so that we can directly compare to
measurements reported in [2]. We report this direct compar-
ison in Table 1. Under the setting of [2], the HORT model
outperforms all previous baselines again.
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