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Appendix
Network Details

In the depth factorization module, we use the same depth
network of an auto-encoder structure as in [2] to predict the
relative depth, and employ a scale network consisting of an
encoder and a regressor. The encoder of the scale network
is shared with the depth encoder and the architecture of the
scale regressor is described in Table 1. In the residual pose
module, we use one pose network and one residual pose
network, both of which share the same structure. The resid-
ual pose network shares parameters in the encoder with the
pose network but learns independent parameters in its pose
prediction head.

Table 1. Scale regressor architecture. Here chns is the number
of ouput channels, k is the kernal size, s is the stride, res is the
downscaling factor for each layer with respect to the input image,
and input is the input to each layer.
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RGB-D 7-Scenes Dataset

In this section, we evaluate our MonoIndoor on the
RGB-D 7-Scenes dataset [4] which contains several video
sequences with 500-1000 frame in each sequence. All
scenes are recorded using a handheld Kinect RGB-D cam-
era at 640×480 resolution. We use the official train/test split.

*Joint first authorship. P. Ji is the corresponding author (pe-
terji530@gmail.com). R. Li’s contribution was made during an internship
with OPPO US Research Center.
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Figure 1. Additional qualitative comparison on EuRoC MAV[3].

Following [1], for training, we first pre-train our MonoIn-
door on NYUv2 dataset, and then fine-tune the model on
this dataset; for testing, we extract one image from every 30
frames. Images are resized to 320× 256 during training.

We present the quantitative results of our model
MonoIndoor and latest state-of-the-art (SOTA) self-
supervised methods on 7-Scenes in Table 5. It shows that
our model outperforms [1] on most scenes before and after
fine-tuning, demonstrating better generalizability and capa-
bility of our model. Specifically, compared to a recent self-
supervised method by Bian et al. [1], on the scene “Fire”,
our method reduces AbsRel by 1.2% and increases δ1 by
2.3%, reaching an AbsRel of 7.7% and δ1 of 93.9%; on the
scene ”Heads”,our method reduces AbsRel by 1.8% and in-
creases δ1 by 2.7%, reaching an AbsRel of 10.6% and δ1 of
88.9%.

Odometry Evaluation

In Table 3, we evaluate the proposed residual pose es-
timation module on the test sequences V1 03 and V2 01



Table 2. Comparison of our method to latest self-supervised methods on RGB-D 7-Scenes [4]. Best results are in bold.

Scenes
Bian et al. [1] MonoIndoor (Ours)

Before Fine-tuning After Fine-tuning Before Fine-tuning After Fine-tuning
AbsRel Acc δ1 AbsRel Acc δ1 AbsRel Acc δ1 AbsRel Acc δ1

Chess 0.169 0.719 0.103 0.880 0.157 0.750 0.097 0.888
Fire 0.158 0.758 0.089 0.916 0.150 0.768 0.077 0.939

Heads 0.162 0.749 0.124 0.862 0.171 0.727 0.106 0.889
Office 0.132 0.833 0.096 0.912 0.130 0.837 0.083 0.934

Pumpkin 0.117 0.857 0.083 0.946 0.102 0.895 0.078 0.945
RedKitchen 0.151 0.78 0.101 0.896 0.144 0.795 0.094 0.915

Stairs 0.162 0.765 0.106 0.855 0.155 0.753 0.104 0.857

of the EuRoC MAV [3]. We follow [6] to evaluate rela-
tive camera poses estimated by our residual pose estimation
module. We use the following evaluation metrics: abso-
lute trajectory error (ATE) which measures the root-mean
square error between predicted camera poses and ground-
truth, and relative pose error (RPE) which measures frame-
to-frame relative pose error in meters and degrees, respec-
tively. As shown in Table 3, on both two test sequences,
compared with the baseline model Monodepth2 [2] which
employs one-stage pose network, using our residual pose
estimation module leads to improved relative pose estima-
tion across all evaluation metrics. Specifically, on the se-
quence V1 03, the ATE by our MonoIndoor is significantly
decreased from 0.0681 meters to 0.052 meters and PRE(°)
is reduced by around half, from 1.3237°to 0.7179°.

Table 3. Odometry results on the EuRoC MAV [3] test set. Re-
sults show the average absolute trajectory error(ATE), and the rel-
ative pose error(RPE) in meters and degrees, respectively. Seq.:
sequence name.

Seq. Methods ATE(m) RPE(m) RPE(°)

V1 03 Monodepth2 [2] 0.0681 0.0686 1.3237
MonoIndoor(Ours) 0.052 0.0637 0.7179

V2 01 Monodepth2 [2] 0.0266 0.0199 1.1985
MonoIndoor(Ours) 0.0222 0.0109 1.1974

Additional Qualitative Results

We include additional qualitative results on both the Eu-
RoC and NYUv2 test sets in Figure 1 and Figure 2, respec-
tively. From both figures, we can see that our models gen-
erate depth maps of higher quality.

In Figure 3, we visualize predictions qualitatively on
NYUv2 by our proposed modules. We can see that each
module improves the quality of depth maps and our full
models produce depth maps of higher quality.

We further visualize intermediate and final synthesized
views compared with the current view on NYUv2 in the
Figure 4. Highlighted regions show that final synthesized
views are better than the intermediate synthesized views and
closer to the current view.
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Figure 2. Additional qualitative comparison on NYUv2 [5].
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Figure 3. Qualitative ablation comparisons of depth prediction on NYUv2. Our full model with both depth factorization and residual pose
modules produce better depth maps.
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Figure 4. Intermediate synthesized views on NYUv2.


