
Supplementary Materials for Semantically Robust Unpaired Image Translation
for Data with Unmatched Semantics Statistics

A. Eqn. 3 vs. Eqn. 4 in the definition of Lrobust

In the main paper at Sec. 4.2, we briefly discuss the re-
lation between the two versions (namely, Eqn. 3 & 4) of
Lk used in our proposed semantic robustness loss Lrobust.
Here we include more details. To begin with, let us list them
below as Eqn. a and b, respectively.

Lk = Ex
[ 1

||τk||2

∥∥∥Fk(Gk1 (x)) − (a)

Fk(Gk1 (GK+1
k (Gk1 (x) + τk)))

∥∥∥
2

]

L′k = Ex
[ 1

||τk||2

∥∥∥Fk(Gk1 (G(x))) − (b)

Fk(Gk1 (GK+1
k (Gk1 (x) + τk)))

∥∥∥
2

]
The difference between the two is the extra G(·) inside the
L2 norm of the Eqn. b. Remind that by the notations in
the main paper we have G(x) = GK+1

k (Gk1 (x)). Opti-
mizing Eqn. b directly reflects our definition of semantic
robustness in Sec. 3.4, i.e., the transformed image G(x)
should have their semantics computed by Fk ◦ Gk invari-
ant to small perturbations τk in the feature space (i.e. the
output space of Gk) of the input x. On the other hand,
optimizing Eqn. a indirectly minimizes Eqn. b, since the
contrastive loss (Eqn. 2 in Sec. 4,1 in the main paper) min-
imizes ||Fk(Gk1 (x)) − Fk(Gk1 (G(x)))||2 due to all the out-
puts of Fk constained to be on the same unit sphere (please
refer to the CUT paper [8] for details.) In specific, de-
note Ak(x) = Fk(Gk1 (G(x))), Bk(x) = Fk(Gk1 (x)) and
Ck(x) = Fk(Gk1 (GK+1

k (Gk1 (x) + τk))), we have

L′k = Ex
[ 1

||τk||2
||Ak(x)− Ck(x)||2

]
= Ex

[ 1

||τk||2
||Ak(x)−Bk(x) +Bk(x)− Ck(x)||2

]
≤ Ex

[ 1

||τk||2
(
||Ak(x)−Bk(x)||2 + ||Bk(x)− Ck(x)||2

)]

= Ex||Ak(x)−Bk(x)||2 + Ex
[ 1

||τk||2
||Bk(x)− Ck(x)||2

]
= Ex||Ak(x)−Bk(x)||2 + Lk

In short, we have

L′k ≤ Lk + Ex||Ak(x)−Bk(x)||2

Since 1
K

∑K
k=1 Ex||Ak(x) − Bk(x)||2 is minimized by

the contrastive loss, our proposal to minimize Lrobust =
1
K

∑K
k=1 Lk effectively minimizes an upper bound of

1
K

∑K
k=1 L′k.

We argue that optimizing such an upper bound (the adap-
tive version) is better than directly minimizingL′k since oth-
erwise the diversity of the translation can be harmed. As a
result, it might fail to produce complex visual patterns and
create artifacts instead. We numerically compare the perfor-
mances in the ablation studies (Sec. 6 in the main paper).
We also show a visual comparison in Fig. 1.

B. Evaluation on Label to Image and GTA to
Cityscapes datasets

When computing the three metrics on the Label to Image
and the GTA to Cityscapes tasks, we use a light-weight
DeepLab V3 [2] model pre-trained on the Cityscapes
semantic segmentation task to evaluate the segmentation
masks of the translated images. In specific, we choose the
mobilenetv3_small_cityscapes_trainfine
model, publicly available at TensorFlow Model Page.

For both tasks and all 3 metrics, we perform the eval-
uation on the 500 (finely annotated) validation set of the
Cityscapes dataset which consists of 19 classes. We ig-
nore all unlabelled pixels when computing the metrics. We
follow the common evaluation protocol as in [8]. For px-
Acc (the average pixel accuracy), we compute the average
pixel accuracy of the segmentation masks predicted by the
DeepLab model on the translated images. For clsAcc (the
class accuracy), we compute the average pixel accuracy per
semantic class and then compute the mean of those across
all 19 classes. For mIoU (mean IoU), we compute the aver-
age IoU per class and then the mean of them.
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https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md


Figure 1. Visual comparisons of the Label to Image task for E4 (a model trained by using L′
k in optimizing Lrobust) vs. SRUNIT (by using

Lk instead). The former does harm to the diversity of the translations. The red boxes highlight area where there are artifacts.

C. Dataset Construction with Unmatched Se-
mantics Statistics

Our paper focuses on unpaired image-to-image transla-
tion where data from two domains inherently have different
semantics distributions. One example where we quantita-
tively demonstrate this discrepancy is in Fig. 1 (from the
main paper) for the GTA to Cityscapes task. Since origi-
nally designed for paired image translations, the Label to
Image and the Google Map to Aerial Photo datasets in our
experiments are sub-sampled to ensure a reasonable amount
of difference in their semantics statistics (briefly mentioned
in Sec. 5.1.1, 5.1.3 & 5.1.4).

In the Label to Image task from Cityscapes, as the orig-
inal dataset is paired, we characterize each pair of images
(the RGB semantic mask from the source domain and the
street-view image from the target domain) by its histogram
of the semantic classes (a vector ∈ R19, where the ith entry
represents the ratio of the pixels belonging to the ith class
in the image). Then we use the K-means (K = 2) algo-
rithm to cluster the 2975 images from the training set in
Cityscapes according to these histograms (i.e., vectors). We
use all the source images from one cluster and all the target
images from the other cluster as the sub-sampled unpaired
data. The resulting two clusters are of roughly the same size
with different semantics statistics shown in Fig. 2 (top).

In the Google Map to Aerial Photo task (and vice versa),
similarly, since the dataset is paired, we can characterize
each out of the 1096 training pairs by the color histogram
of its google map image. In specific, we convert all google
map image from RGB to gray-scale and apply bucketing
to the pixel intensities (each bucket includes consecutively
5 out of the 256 total values) so that each histogram be-
comes a vector ∈ R51. We apply K-means (again K = 2)
clustering on these histograms. The resulting clusters are
very different in size due to the long tail distribution in the
Google Map dataset. To deal with this, we first obtain the
two histogram centroids from K-means. Then, from high-
est to lowest, we rank all pairs of images by the ratio of
the distance between its histogram to one centroid over that
between its histogram to the other centroid. We then as-

Figure 2. (top) Semantics distributions of the Label and Image
data, each from one of the two clusters. (bottom) Semantics dis-
tributions of the Google Maps and Aerial Photos from the two
clusters. As mentioned in Appendix C, the latter has a very large
semantics discrepancy and thus we mix 10% of each cluster when
constructing our sub-sampled dataset.

sign the top half of the pairs to one cluster and the rest to
the other. Fig. 2 (bottom) shows the resulting distributions,
where there is a large difference between the two. We use all
Google maps from cluster I together with 10% of randomly
sampled Google map images from cluster II (similarly all
aerial photos from cluster II and 10% from I) to ensure the
reasonable amount of difference in semantics statistic be-
tween the two domains.
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D. Mismatched Semantics Statistics, Seman-
tics Flipping & Semantic Robustness

In Sec. 3.2 of the main paper, we argue that it is inher-
ently common in unpaired image translation to have mis-
matched semantics statistics across domains, and as a re-
sult, the semantics flipping usually occurs in the spurious
solutions obtained by existing GAN-based methods. We
claim in Sec. 3.4 that our proposed semantics robustness
can effectively mitigate the semantics flipping problems by,
to some extent, offsetting the negative effects of the differ-
ence in semantics statistics.

To give more insights, we construct training data with
better-aligned semantics statistics between the source and
target domains by adding more data to the training set from
the opposite cluster. For instance, in the Label to Image task
where all source images are from cluster I and target ones
from cluster II, we add X% of source images randomly sam-
pled from cluster II and X% of target images from cluster I
to form a new set of training data. We compare several CUT
[8] models (the backbone of our proposed method SRUNIT)
trained with data of different levels of discrepancy in se-
mantics statistics. The results (illustrated in Fig. 3) indicate
that (1) better-matched semantics statistics of the training
data lead to less semantics flipping; (2) our method’s im-
provement over its baseline in reducing semantics flipping
is substantial. As the results of SRUNIT are visually com-
parable to the baseline with 50% more training data (which
significantly reduces the difference in semantics statistics
across the domains).

E. More Visual Results

We show additional visual results for the 7 unpaired
image-to-image translation tasks performed in the main pa-
per. They are Label to Image and GTA to Cityscapes (see
Fig. 4), Map to Photo and Photo to Map (see Fig. 5), Horse
to Zebra, Summer to Winter and Day to Night (see Fig. 6),
respectively.

F. Additional Implementation Details

This section includes more implementation details about
our method SRUNIT. Please also refer to Sec. 5.3 of the
main paper. We follow CUT [8] for the choice of network
architecture and the training setup. In specific, we use the
least square loss [7], a ResNet-based generator [5] with 9
residual blocks, and a patch-based discriminator [4]. We
keep an image buffer of size 50 to update the discriminator
for better training stability [9]. We use the default hyper-
parameters for relevant loss terms in CUT, including se-
lecting the same K = 5 layers in the generator to com-
pute the contrastive loss. We add our proposed loss term
β ∗Lrobust = β

K

∑K
k=1 Lk using the sameK layers (by de-

Figure 3. The three columns correspond to the experiments on La-
bel to Image, Map to Photo and Photo to Map, respectively. CUT
+ X% data indicates a CUT [8] model trained with X% more data
sampled from the opposite cluster (to mitigate the mismatched
semantics statistics problem). We shows that SRUNIT is rather
effective in reducing semantics flipping caused by the different
semantics statistics. It produces comparable or better translation
results than the CUT baseline trained on data with much more
“matched” semantics statistics. The red boxes highlight the areas
where SRUNIT have improvements over CUT.

fault) with the coefficient β = 10−4 (by default). We fine-
tune K to be 4 or 5 by leaving one of the {mathcalLk} out
each time. We use Adam optimizers [6] to train our model
for 400 epochs with an initial learning rate of 0.0002 and
a linear decay for the last 50% of epochs (the same with
CUT). The exception is that for the GTA to Cityscapes task,
due to the large quantity of the training data, we only train
for 20 epochs in total. Moreover, we adopt the patch-based
approach as in CUT to compute Lrobust; i.e., in each train-
ing iteration we randomly sample 256 patches from each
of the K layers to compute Lk (assuming batch size is 1).
This can significantly reduce the computation complexity in
optimizing Lrobust.

G. Details about the Ablation Studies

For all models (E1 to E6) in the ablation studies section
(Sec. 6 in the main paper), we use CUT as the backbone
(the same as our proposed method SRUNIT).
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Figure 4. Additional visual results for the Label to Image and the GTA to Cityscapes tasks.

E1 We aim to compare SRUNIT with the constraint pro-
posed in DistanceGAN [1]. E1 is trained by adding the self-
distance loss given as:

Ldist (G) = Ex
[ 1

σX
(‖L(x)−R(x)‖1 − µX)

− 1

σY
(‖L (G(x))−R (G(x))‖1 − µY )

]
where L,R : RH×W×3 → RH×W

2 ×3 are the operators that
given an input image x return the left or right part of it and
σ∗, µ∗ are the pre-computed image statistics from the two
domain X and Y (see [1]).

E2 Similarly we compare SRUNIT with (a modified ver-
sion of) the constraint proposed in HarmonicGAN [10]. We

train E2 by adding the smoothness loss:

Lsmooth = Ex1,x2

[
||d(x1, x2)− d(G(x1), G(x2))||1

]
where x1, x2 are image patches from the same input image,
d(·, ·) is the distance function measured by using the his-
tograms of two input patches, and G(x1) refers to image
patch of the translation G(x) corresponding to the patch x1
from the input image x (see details in [10]). In each itera-
tion, we randomly sample 256 image patches to form 128
pairs from the input image to compute Lsmooth (assuming
the batch size is 1).

E3 We aim to verify the necessity of using feature extrac-
tor Fk in Lrobust. We train E3 by removing Fk in Lrobust,
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Figure 5. Additional visual results for the Map to Photo and the Photo to Map tasks.

Figure 6. Additional visual results for the Horse to Zebra, the Summer to Winter and the Day to Night tasks.

i.e., defining Lrobust = 1
K

∑K
k=1 L̃k, where

L̃k = Ex
[ 1

||τk||2

∥∥∥Gk1 (x)− Gk1 (GK+1
k (Gk1 (x) + τk))

∥∥∥
2

]
E4 We aim to empirically show the advantage of Eqn. a
over Eqn. b (see Sec. 4.2 in the main paper and Appendix
A for a discussion). We train E4 by setting Lrobust =
1
K

∑K
k=1 L′k instead of 1

K

∑K
k=1 Lk.
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E5 We aim to show that directly minimizing the distance
between semantics extracted by Fk of the input image and
that of the corresponding translated image is not an effective
way to reduce semantics flipping. We train E5 by adding the
semantics consistency term Lsc = 1

K

∑K
k=1 Lsck , where

Lsck = Ex‖Fk(Gk1 (x))− Fk(Gk1 (G(x)))‖2

Since the semantics extractors {Fk} are learned in an unsu-
pervised manner, they are not accurate enough for direct en-
forcement of the preservation of semantics during the trans-
lations.

E6 Another direction of efforts to reduce semantics flip-
ping is to pose constraints on the discriminator instead of
on the generator. We train E6 by applying the Lipschitz
penalty [3] to the discriminator in CUT. Namely, we add
the Lipschitz loss:

Llip = Ex[||∇xDY (x)||2 + ||∇G(x)
DY (G(x))||2]

where x is the mean value of x and G(x) the mean value of
G(x). We do so since CUT utilizes a patch-based discrimi-
nator and the gradient computation∇ is much cheaper than
the Jacobian computation.

Remark: In E3, E4, and E5, x refers to the image patches
instead of the entire images in the similar way as to how
we adopt the patch-based approach in CUT to optimize our
proposed semantic robustness loss Lrobust.
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