
COTR: Correspondence Transformer for Matching Across Images

Supplementary Material

Training loss Validation loss

Figure B. Unstable training and validation loss for COTR with
log-linear positional encoding. We terminate the training earlier as
the loss diverges.

Training loss Validation loss

Figure A. Training and validation loss for COTR with linear

positional encoding. Both losses slowly converge to a stable status.

A. Compute
The functional (and recursive) nature of our approach,

coupled with the use of a transformer, means that our method
has significant compute requirements. Our currently non-
optimized prototype implementation queries one point at
a time, and achieves 35 correspondences per second on a
NVIDIA RTX 3090 GPU. This limitation could be addressed
by careful engineering in terms of tiling and batching. Our
preliminary experiments show no significant drop in per-
formance when we query different points inside a given
crop – we could thus potentially process any queries at the
coarsest level in a single operation, and drastically reduce
the number of operations in the zoom-ins (depending on
how many queries overlap in a given crop). We expect this
will speed up inference drastically. In addition to batching
the queries at inference time, we plan to explore its use on
non-random points (such as keypoints) and advanced inter-
polation techniques.

B. Log-linear vs Linear
Here, we empirically demonstrate that linear positional

encoding is important. We train two COTR models with
different positional encoding strategies; see Section 3.2.
One model uses log-linear increase in the frequency of the
sine/cosine function, and the other uses linear increase in-
stead. Fig. A shows that COTR successfully converges using
the linear increase strategy. However, as shown in Fig. B,
COTR fails to converge with the commonly used log-linear

strategy [73, 10]. We suspect that this is because the task
of finding correspondences does not involve very high fre-
quency components, but further investigation is necessary
and is left as future work.

C. Architectural details for COTR
Backbone. We use the lower layers of ResNet50 [23] as
our CNN backbone. We extract the feature map with 1024
channels after layer3, i.e., after the fourth downsampling
step. We then project the feature maps with 1024 channels
with 1⇥ 1 convolution to 256 channels to reduce the amount
of computation that happens within the transformers.
Transformers. We use 6 layers in both the transformer
encoder and the decoder. Each encoder layer contains an 8-
head self-attention module, and each decoder layer contains
an 8-head encoder-decoder attention module. Note that we
disallow the self-attention in the decoder, in order to maintain
the independence between queries – queries should not affect
each other.
MLP. Once the transformer decoder process the results,
we obtain a 256 dimensional vector that represents where
the correspondence should be. We use a 3-layer MLP to
regress the corresponding point coordinates from the 256-
dimensional latent vector. Each layer contains 256 neurons,
followed by ReLU activations.

D. Architectural details for the MLP variant
Backbone. We use the same backbone in COTR. The differ-
ence here is that, once the feature map with 256 channels is
obtained, we apply max pooling to extract the global latent
vector for the image, as suggested in [21]. We also tried
a variant where we do not apply global pooling and use a
fully-connected layer to bring it down to a manageable size
of 1024 neurons but it quickly provided degenerate results,
where all correspondence estimates were at the centre.
MLP. With the latent vectors from each image, we use
a 3 layer MLP to regress the correspondence coordinates.
Specifically, the input to the coordinate regressor is a 768-
dimensional vector, which is the concatenation of two global
latent vectors for the input images and the positional en-
coded query point. Similarly to the MLP used in COTR,
each linear layer contains 256 neurons, and followed by
ReLU activations.

E. Comparing with RAFT [65]
RAFT [65] performs better in KITTI-type of scenarios,

not necessarily so for other cases. To show this, we provide



Method ETH3D

AEPE# rate=3 rate=5 rate=7 rate=9 rate=11 rate=13 rate=15
RAFT [65] ECCV’20 1.92 2.12 2.33 2.58 3.90 8.63 13.74
COTR 1.66 1.82 1.97 2.13 2.27 2.41 2.61
COTR +Interp. 1.71 1.92 2.16 2.47 2.85 3.23 3.76

Method KITTI 2012 KITTI 2015 HPatches

AEPE# Fl# AEPE# Fl# AEPE# PCK-1px" PCK-3px" PCK-5px"
RAFT [65] ECCV’20 2.15 9.30 5.00 17.4 44.3 31.22 62.48 70.85
COTR 1.28 7.36 2.62 9.92 7.75 40.91 82.37 91.10
COTR +Interp. 2.26 10.50 6.12 16.90 7.98 33.08 77.09 86.33

Method Image Matching Challenge

Num. Inl." mAA(5�)" mAA(10�)"
RAFT [65] ECCV’20+DEGENSAC (N= 2048) 1066.1 0.163 0.259
COTR +DEGENSAC (N= 2048) 1686.2 0.515 0.678

Table A. RAFT on ETH3D, KITTI, HPatches, and IMC2020.

results for RAFT [65] on all other datasets in Table A. On
KITTI, sparse COTR still performs best, and with the inter-
polation strategy it is roughly on par with RAFT [65]. On
other datasets, COTR outperforms RAFT [65] by a large
margin1.

1Note that RAFT [65] requires two input images of the same size. We
resize them to 1024⇥1024 for HPatches and the Image Matching Challenge.


