COTR: Correspondence Transformer for Matching Across Images

Supplementary Material

04
0.8 0.3
0.2

04
0.1

0 5k 10k 15k 20k 25k 30k 35k 40k 45k 0 5k 10k 15k 20k 25k 30k 35k 40k 45k

Training loss Validation loss
Figure B. Unstable training and validation loss for COTR with
log-linear positional encoding. We terminate the training earlier as

the loss diverges.

Be-4 5.5¢-3
6Ge-4

4.5e-3
4e-4

3.5e-3
2e-4

0 25e-3

0 400k 800k 12M 1.6M 2M 0 400k 800k 12M 16M 2M

Training loss Validation loss

Figure A. Training and validation loss for COTR with linear
positional encoding. Both losses slowly converge to a stable status.

A. Compute

The functional (and recursive) nature of our approach,
coupled with the use of a transformer, means that our method
has significant compute requirements. Our currently non-
optimized prototype implementation queries one point at
a time, and achieves 35 correspondences per second on a
NVIDIA RTX 3090 GPU. This limitation could be addressed
by careful engineering in terms of tiling and batching. Our
preliminary experiments show no significant drop in per-
formance when we query different points inside a given
crop — we could thus potentially process any queries at the
coarsest level in a single operation, and drastically reduce
the number of operations in the zoom-ins (depending on
how many queries overlap in a given crop). We expect this
will speed up inference drastically. In addition to batching
the queries at inference time, we plan to explore its use on
non-random points (such as keypoints) and advanced inter-
polation techniques.

B. Log-linear vs Linear

Here, we empirically demonstrate that linear positional
encoding is important. We train two COTR models with
different positional encoding strategies; see Section 3.2.
One model uses log-linear increase in the frequency of the
sine/cosine function, and the other uses linear increase in-
stead. Fig. A shows that COTR successfully converges using
the linear increase strategy. However, as shown in Fig. B,
COTR fails to converge with the commonly used log-linear

strategy [73, 10]. We suspect that this is because the task
of finding correspondences does not involve very high fre-
quency components, but further investigation is necessary
and is left as future work.

C. Architectural details for COTR

Backbone. We use the lower layers of ResNet50 [23] as
our CNN backbone. We extract the feature map with 1024

channels after layer3, i.e., after the fourth downsampling
step. We then project the feature maps with 1024 channels

with 1 x 1 convolution to 256 channels to reduce the amount
of computation that happens within the transformers.
Transformers. We use 6 layers in both the transformer
encoder and the decoder. Each encoder layer contains an 8-
head self-attention module, and each decoder layer contains
an 8-head encoder-decoder attention module. Note that we
disallow the self-attention in the decoder, in order to maintain
the independence between queries — queries should not affect
each other.

MLP. Once the transformer decoder process the results,
we obtain a 256 dimensional vector that represents where
the correspondence should be. We use a 3-layer MLP to
regress the corresponding point coordinates from the 256-
dimensional latent vector. Each layer contains 256 neurons,
followed by ReLLU activations.

D. Architectural details for the MLP variant

Backbone. We use the same backbone in COTR. The differ-
ence here is that, once the feature map with 256 channels is
obtained, we apply max pooling to extract the global latent
vector for the image, as suggested in [21]. We also tried
a variant where we do not apply global pooling and use a
fully-connected layer to bring it down to a manageable size
of 1024 neurons but it quickly provided degenerate results,
where all correspondence estimates were at the centre.
MLP. With the latent vectors from each image, we use
a 3 layer MLP to regress the correspondence coordinates.
Specifically, the input to the coordinate regressor is a 768-
dimensional vector, which is the concatenation of two global
latent vectors for the input images and the positional en-
coded query point. Similarly to the MLP used in COTR,
each linear layer contains 256 neurons, and followed by
ReLU activations.

E. Comparing with RAFT [65]

RAFT [65] performs better in KITTI-type of scenarios,
not necessarily so for other cases. To show this, we provide

ETH3D

Method
AEPE| rate=3 rate=5 vrate=7 rate=9 rate=11 rate=13 rate=15
RAFT [65] ecevo 1.92 2.12 2.33 2.58 3.90 8.63 13.74
COTR 1.66 1.82 1.97 213 2.27 241 2.61
COTR +Interp. 171 192 216 247 285 323 3.76
Method KITTI 2012 KITTI 2015 HPatches
AEPE| Fl| AEPE| Fl| AEPE| PCK-lpx{ PCK-3pxt PCK-5pxt
RAFT [65] bccvo 215 930 5.00 17.4 44.3 31.22 62.48 70.85
COTR 1.28 7.36 2.62 9.92 1.5 40.91 82.37 91.10
COTR +Interp. 226 1050 612 1690 7.98 33.08 77.09 8633
Method Image Matching Challenge
Num. Inl.t mAA(5°)T mAA(10°)t
RAFT [65] ecev20+DEGENSAC (N= 2048) 1066.1 0.163 0.259
COTR +DEGENSAC (N=2048) 1686.2 0.515 0.678

Table A. RAFT on ETH3D, KITTI, HPatches, and IMC2020.

results for RAFT [65] on all other datasets in Table A. On
KITTI, sparse COTR still performs best, and with the inter-
polation strategy it is roughly on par with RAFT [65]. On
other datasets, COTR outperforms RAFT [65] by a large
margin'.

'Note that RAFT [65] requires two input images of the same size. We
resize them to 1024 x 1024 for HPatches and the Image Matching Challenge.

