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Abstract

This document provides supplementary information that
is not elaborated in our main paper due to the space con-
straints: Section A shows some additional illustrations to
explain our method further. Section B describes the imple-
mentation details in our experiments. Section C details our
used datasets under diverse settings. Section D provides
some studies on the variants of focal frequency loss. Sec-
tion E presents additional results and analysis.

A. Additional Illustrations of Methodology
A.1. Spatial Frequency Visualization

After applying 2D discrete Fourier transform, an image
is converted into its frequency representation and decom-
posed into orthogonal sine and cosine functions. The angu-
lar frequency of each sine and cosine function is decided by
the frequency spectrum coordinate (u, v). The spatial fre-
quency manifests as the 2D sinusoidal components in the
image. The spectrum coordinate also represents the angled
direction of a specific spatial frequency. As an intuitive
view, we show some examples of the 2D sinusoidal com-
ponents with specific spatial frequencies in Figure 1. It is
observed that the angled direction and density (angular fre-
quency) of the waves depend on the spectrum coordinate
(u, v). Besides, the complex frequency value F (u, v) can
be regarded as the weight for each wave, and the weighted
sum corresponds to the whole image in the spatial domain.

A.2. More Intuitive Illustration

To further explain the proposed focal frequency loss
(FFL), we will provide a more intuitive illustration in this
section. According to Figure 1, an image (gray-scale for
simplicity) is the weighted sum of different spatial frequen-
cies. We expand the accumulated frequencies into a new
dimension, thus the image can be seen as a cube in a space.
The length (L) and width (W) dimensions of the cube cor-
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Figure 1. Two-dimensional sinusoidal components with specific
spatial frequencies in an image. The angled direction and density
(angular frequency) of the waves depend on the spectrum coordi-
nate (u, v), and F (u, v) can be seen as the weight for each wave.
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Figure 2. According to Figure 1, an image (gray-scale for simplic-
ity) can be seen as a cube in a space, where its length (L) and width
(W) dimensions correspond to the pixel domain, and the height (H)
dimension corresponds to the frequency domain.

respond to the pixel domain, and the height (H) dimension
corresponds to the frequency domain, as shown in Figure 2.
Therefore, a single pixel can be seen as the orange prism,
and a specific frequency can be regarded as the green plane.
It is observed that each frequency (i.e., each coordinate
value on the frequency spectrum) depends on all the image
pixels. Due to the inherent bias of neural networks [24, 31],
a model tends to eschew some frequency components that



are hard to synthesize, i.e., hard frequencies, in the H di-
mension. Optimizing in the spatial domain (i.e., in the L and
W dimensions) hardly help the model locate these hard fre-
quencies in the H dimension. Similarly, focusing on certain
pixels (e.g., orange prism) hardly help the model tackle the
hard frequencies (e.g., green plane). Intuitively, when di-
rectly optimizing in the H dimension (i.e., explicitly using
the frequency representation of the image in our method),
the model can easily locate hard frequencies and in turn fo-
cus on them.

In Figure 2, it is noteworthy that each frequency also
affects all the image pixels in the spatial domain. When
FFL directly optimizes and adaptively focuses a model in
the frequency domain, the frequency components in the
H dimension will be reconstructed and synthesized better.
Meanwhile, the general alignment and quality of all the im-
age pixels in the L and W dimensions will be indirectly
improved by FFL, thus boosting some pixel-based metrics
(e.g., PSNR and SSIM [29]) and ameliorating the image re-
construction and synthesis quality.

We wish to highlight that both the spatial-based loss and
frequency-based loss are important since they consider dif-
ferent aspects and dimensions of an image, as illustrated
in Figure 2. Hence, they are complementary and not re-
placeable. The proposed FFL is intending to complement
existing spatial losses of different methods to improve re-
construction and synthesis quality further.

In fact, the actual situation of the frequency components
in an image is much more complicated, which may be a
higher-dimensional representation. The visualization in this
section just provides a simple and intuitive illustration to
help understand the proposed method in this paper.

B. Implementation Details
The code used for our experiments will be made pub-

licly available. All the experiments are conducted on the
NVIDIA Tesla V100 GPUs with 32 GB memory capacity.

B.1. Baseline Details

In this section, we will provide the implementation de-
tails of all the baselines in different image reconstruction
and synthesis tasks. We select five representative meth-
ods from the two popular categories: autoencoder-based
and GAN-based. Besides, we evaluate different network
structures. Specifically, we explore the multilayer percep-
tron (MLP) network and the convolutional neural network
(CNN). For CNN, the network details also vary, e.g., with
or without the skip connections. In addition, we consider
various basic spatial domain losses, e.g., MSE loss, L1 loss,
GAN loss [5], perceptual loss [11], etc., to test the ability of
focal frequency loss to complement these losses.
Vanilla AE. Vanilla autoencoder [8] learns the image la-
tent representation in an unsupervised manner, traditionally

used for dimension reduction and feature learning. We em-
ploy vanilla AE in the image reconstruction task. The net-
work is a simple 2-layer MLP with a hidden size of 256. We
adopt ReLU activations (except the last layer using Tanh)
and no norm layers. We use Adam [15] optimizer and set
β1 = 0.9, β2 = 0.999. The learning rate is 0.001. Normal
initialization (with mean 0.0 and standard deviation 0.02) is
applied to all the networks of vanilla AE. The spatial loss is
MSE loss. The models are trained on 1 GPU with a batch
size of 128. We perform 200 epochs of training on DTD [2]
and 20 epochs of training on CelebA [18].

VAE. Exploiting a reparameterization trick, the variational
autoencoder [16] generates images by learning the latent
representation in a probability distribution manner. We use
VAE for image reconstruction and unconditional image syn-
thesis. We employ CNN for VAE, with typical convolution
and transposed convolution layers. Batch normalization [9]
and Leaky ReLU (with a negative slope of 0.2, except the
last layer using Tanh) are applied. Each convolution layer
has a kernel size 4×4, stride 2, and zero-padding amount 1.
In the encoder, the feature map resolution is halved after
each convolution block. Images are down-sampled to 4×4,
so the number of blocks depends on the input size (e.g., if
the input size is 64 × 64, there will be 4 blocks). After an
input layer, the number of feature channels is 64. Then,
the number of feature channels will double after each con-
volution block, while we set a maximum channel number
to 512 to avoid using redundant parameters. We apply two
linear layers to the encoded feature to learn µ and σ for the
reparameterization. The latent size is 256. After reparam-
eterization, an additional linear layer is used to adjust the
feature to the original shape. In the decoder, the network
structure is completely inverse to the encoder by replacing
convolution layers with the transposed convolution layers.
We use Adam [15] optimizer and set β1 = 0.9, β2 = 0.999.
The learning rate is 0.001. Normal initialization (with mean
0.0 and standard deviation 0.02) is applied to all the net-
works of VAE. The spatial losses are MSE loss and KL di-
vergence loss [16]. The models are trained on 1 GPU with
a batch size of 128. We train our models for 20 epochs on
CelebA [18] and 400 epochs on CelebA-HQ [12].

pix2pix. pix2pix [10] adopts conditional GAN [20] as
a general-purpose solution to image-to-image translation
with training pairs. We employ pix2pix for conditional im-
age synthesis. The U-Net [25] generator is applied, which
is an encoder-decoder with skip connections between mir-
rored layers in the encoder and decoder stacks. There are
8 skip connection blocks in the generator. The patch-based
discriminator is used. Adam [15] optimizer is used with
β1 = 0.5, β2 = 0.999. The learning rate is 0.0002. Normal
initialization (with mean 0.0 and standard deviation 0.02) is
applied to all the networks of pix2pix. The spatial losses are
vanilla GAN loss [5] and L1 loss. The models are trained



on 1 GPU. We conduct 200 epochs of training on CMP Fa-
cades [23] with a batch size of 1. We train the models for 15
epochs on edges → shoes [32] with a batch size of 4. For
other detailed network structures and parameters, we follow
the original paper [10] and their released code.
SPADE. As a task-specific GAN-based method for seman-
tic image synthesis (i.e., synthesizing a photorealistic im-
age from a semantic segmentation mask), SPADE [22] re-
sizes the segmentation mask for modulating the activations
in normalization layers by a learned affine transformation.
The generator is built on a series of residual blocks [6]
with the synchronized version of batch normalization. The
multi-scale patch-based discriminator [28] with the instance
normalization [27] is exploited. Besides, spectral normal-
ization [21] is applied to all the convolutional layers in the
generator and discriminator. Adam [15] optimizer is ex-
ploited with β1 = 0, β2 = 0.9. Two time-scale update
rule [7] is applied, where the learning rates for the generator
and the discriminator are 0.0001 and 0.0004, respectively.
The spatial losses are hinge-based GAN loss [17, 21, 33],
perceptual loss [11] calculated by VGG-19 [26] model, and
feature matching loss [28]. The models are trained for 200
epochs on Cityscapes [3] and ADE20K [34] using 4 GPUs.
The batch size is 32. For other detailed network structures
and parameters, we follow the original paper [22] and their
released code.
StyleGAN2. We further explore the potential of focal fre-
quency loss on the state-of-the-art unconditional image syn-
thesis method, StyleGAN2 [14]. We construct the Style-
GAN2 baseline on top of its open-source official implemen-
tation. The mapping network consists of 8 fully connected
layers. The dimensionality of both the input latent space
and intermediate latent space is 512. The activation func-
tion is Leaky ReLU with a negative slope of 0.2. Several
standard techniques in [12, 13] are applied, such as the ex-
ponential moving average of generator weights, mini-batch
standard deviation layer at the end of the discriminator,
equalized learning rate for all the trainable parameters, etc.
Adam [15] optimizer is used with β1 = 0, β2 = 0.99. The
spatial loss is non-saturating logistic loss [5, 14] with R1

regularization [19]. All the models are trained with 8 V100
GPUs. The batch size is 64 for CelebA-HQ [12] (256×256)
and 32 for the resolution of 1024×1024. For other detailed
network structures and parameters, we follow the original
paper [14] and their released code.

As for the relevant losses used for comparison, i.e., per-
ceptual loss [11] and spectral regularization [4], we follow
all the details in their papers and released code.

B.2. Computational Cost

The computational cost of the proposed focal frequency
loss (FFL) is negligible. Take pix2pix image-to-image
translation on the CMP Facades dataset as an example. The

average computational training time only increases from
0.064 to 0.067 seconds per iteration after applying FFL. The
memory consumption increases from 3513 to 3515 MB.
This cost test is conducted on 1 NVIDIA Tesla V100 GPU.

C. Dataset Details
In this section, we will provide detailed information

about the seven datasets we explored. The datasets vary
in types, sizes, and resolutions.

• Describable Textures Dataset (DTD). We use DTD
provided by [2], which is an evolving collection of tex-
tural images in the wild, annotated with human-centric
attributes. DTD contains texture images with special
frequency patterns. We perform vanilla AE image re-
construction using this dataset, with 4, 512 images for
training and 1, 128 images for testing. The original im-
ages are scaled and center cropped to 64× 64.

• CelebA. CelebA [18] is a large-scale face attributes
dataset covering large pose variations and background
clutter. We conduct image reconstruction with vanilla
AE and VAE on CelebA. Besides, we perform VAE
unconditional image synthesis on CelebA. We use the
cropped and aligned faces, which are more natural im-
ages. The training set contains 199, 599 images, and
the test set has 3, 000 images. The images are resized
and center cropped to 64× 64.

• CelebA-HQ. CelebA-HQ is a higher-quality version
of the CelebA dataset provided by [12]. The origi-
nal resolution is 1024 × 1024. We perform VAE im-
age reconstruction on this dataset. Besides, we study
the unconditional image synthesis by VAE and Style-
GAN2 using CelebA-HQ. The dataset is randomly
split, yielding 27, 000 images for training and 3, 000
images for evaluation. All the cropped and aligned
face images are uniformly resized to 256 × 256. For
StyleGAN2, we also tried to synthesize images with a
resolution of 1024× 1024 besides 256× 256.

• CMP Facades. For pix2pix image-to-image trans-
lation, we utilize the officially prepared CMP Fa-
cades [23] dataset. The facades are collected from
different cities around the world with diverse architec-
tural styles. CMP Facades contains architectural labels
and photos, which is suitable for mask→ image trans-
lation. The sizes of training and test sets are 400 and
106, respectively. The resolution is 256× 256.

• Edges → shoes. We also exploit the officially pre-
pared edges → shoes dataset for pix2pix image-to-
image translation. The shoe images are from UT Zap-
pos50K [32]. The shoes are centered on a white back-
ground. The edge maps are detected by HED [30]. The



numbers of images for training and testing are 49, 825
and 200, respectively. The image size is 256× 256.

• Cityscapes. We use the Cityscapes [3] dataset for
SPADE semantic image synthesis. Cityscapes dataset
consists of street scene images that are mostly col-
lected in Germany. The dataset provides instance-
wise, dense pixel annotations of 30 classes. The train-
ing set has 2, 975 images, and the test set contains 500
images. The images are scaled to 512× 256.

• ADE20K. ADE20K [34] dataset contains challenging
in-the-wild images with fine annotations of 150 se-
mantic classes. We also use ADE20K for SPADE se-
mantic image synthesis, with 20, 210 images for train-
ing and 2, 000 images for evaluation. All the images
are resized to 256× 256.

D. Variant Studies
In our main paper, we mentioned that the exact form of

the proposed focal frequency loss (FFL) is not crucial. In
this section, we will provide some variants to extend and
modify FFL. We will show some studies on these variants.
For simplicity and intuitiveness, we revisit the vanilla AE
image reconstruction task on CelebA. We report quantita-
tive evaluation results for the variant studies. The visual
results of variants are similar.

Several simple variants can be derived by adjusting the
spectrum weight matrix parameter α. The parameter α con-
trols how close the weight matrix values are, i.e., how fo-
cused the model is. The larger α is, the model will be more
focused on the hard frequencies, i.e., the weight difference
for easy and hard frequencies will be larger. For the exper-
iments we present in our main paper, we set α = 1 (we
call the main version). The results are shown in Table 1.
Applying the main version of FFL (α = 1) shows better
performance than the baseline without FFL in all the five
metrics. If we set α = 2, the quantitative results degrade
from the main version, especially FID. This suggests that
the model may be too focused on the hard frequencies while
ignoring some important easy frequency information, albeit
the results are still better than the baseline in most cases.
When setting α = 0.5, all the metric results are better than
the baseline. The LPIPS and FID scores become better than
the main version. The results of this variant are close to the
main version of FFL. If we set α = 0.1, the quantitative re-
sults degrade from the main version despite still better than
the baseline. This indicates that the model may be too unfo-
cused. For a trade-off, we select α = 1 as the main version
of FFL, while one may consider choosing other variants re-
garding the parameter α in certain tasks for the flexibility.

Besides, we study another category of variants, the
patch-based focal frequency loss, where we crop an image
into small patches so that the focused frequencies are at the

Table 1. The PSNR (higher is better), SSIM (higher is better),
LPIPS (lower is better), FID (lower is better) and LFD (lower is
better) scores for the variant studies on the spectrum weight ma-
trix parameter α for the focal frequency loss.

PSNR↑ SSIM↑ LPIPS↓ FID↓ LFD↓
baseline 20.044 0.568 0.237 97.035 14.785

α = 1 (main) 21.703 0.642 0.199 83.801 14.403
α = 2 21.376 0.621 0.203 102.329 14.478
α = 0.5 21.521 0.635 0.197 82.561 14.445
α = 0.1 20.497 0.591 0.225 89.792 14.681

Table 2. The PSNR (higher is better), SSIM (higher is better),
LPIPS (lower is better), FID (lower is better) and LFD (lower is
better) scores for the variant studies on patch-based focal fre-
quency loss. Patch factor p is the number of patches on each edge.

PSNR↑ SSIM↑ LPIPS↓ FID↓ LFD↓
baseline 20.044 0.568 0.237 97.035 14.785

p = 1 (main) 21.703 0.642 0.199 83.801 14.403
p = 2 21.836 0.648 0.185 88.475 14.372
p = 4 21.752 0.643 0.170 90.612 14.392
p = 8 21.414 0.627 0.176 102.334 14.470

patch level. We define the patch factor p as the number of
patches on each edge. For instance, if p = 2, the image
will be cropped into 2 × 2 = 4 patches. Obviously, us-
ing the original image without cropping it into patches, i.e.,
the main version of FFL we defined before, corresponds to
p = 1. The results are shown in Table 2. We note that
p = 1, 2, 4 achieve close performance regarding the five
evaluation metrics, all of which are much better than the
baseline. However, if we set p = 8, the quantitative perfor-
mance will degrade from the previous versions, especially
FID. Although the results are still better than the baseline in
most cases, this indicates that the patch size should not be
too small. We simply choose p = 1 as the main version of
FFL for our experiments in the main paper. However, the
variant studies show that the patch-based focal frequency
loss may contribute to an additional performance boost in
certain cases. Thus, this may be another direction to extend
and modify FFL.

E. Additional Results and Analysis

E.1. Frequency Domain Gap

As mentioned in the main paper, we wish to improve
the image reconstruction and synthesis quality by narrow-
ing the frequency domain gap between the real and gener-
ated images using the proposed focal frequency loss (FFL).
We have shown that the gaps between mini-batch average
spectra of state-of-the-art StyleGAN2 are clearly mitigated
by FFL. We will show some more examples of VAE image
reconstruction on the CelebA [18] dataset and provide more
analysis about the frequency domain gap in this section.

The results are shown in Figure 3. In the spatial do-
main, without applying FFL, the reconstructed faces are
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Figure 3. Frequency domain gaps are narrowed by the focal frequency loss (FFL) for VAE image reconstruction on CelebA.

Figure 4. The spatial losses (MSE) with the same weight and ran-
dom seed of the two training processes with/without focal fre-
quency loss (FFL) for vanilla AE image reconstruction on CelebA.
The spatial loss converges to a lower point with the help of FFL.

blurry. This may be attributed to the reparameterization op-
eration in the latent space between the encoder and decoder,
which increases the difficulty for reconstruction. Trained
with FFL, the VAE model can synthesize much clearer re-
sults, being closer to the ground truth real images. The
perceptual quality is better after applying FFL. In the fre-
quency domain, in line with our visualizations in the main
paper, the VAE baseline without FFL bias to a limited spec-
trum region, losing high-frequency information (outer re-
gions and corners). The frequency domain gaps are clearly
narrowed after adopting FFL. The spectrum distribution be-
comes closer to the ground truth. Besides, some essen-
tial special spectrum patterns can be generated by applying
FFL. This suggests the effectiveness of focal frequency loss
to narrow the frequency domain gaps and ameliorate image
quality further.

E.2. Training Loss

In the main paper, we have mentioned that the proposed
focal frequency loss (FFL) is complementary to existing
spatial losses, e.g., MSE loss, to improve image reconstruc-
tion and synthesis quality. We further analyze the training
loss in this section. We choose the vanilla AE image re-

edge baseline full FFL w/o freq w/o phase w/o ampli w/o focal

FID ↓ 80.279 74.359 86.674 98.778 89.255 77.864
IS ↑ 2.674 2.804 2.713 2.667 2.527 2.705

Figure 5. Additional ablation studies of each key component
for the focal frequency loss (FFL), i.e., frequency representation
(freq), phase and amplitude (ampli) information, and dynamic
spectrum weighting (focal) in the pix2pix image-to-image trans-
lation task on edges → shoes (256 × 256). The corresponding
FID (lower is better) and IS (higher is better) scores are reported
below the images.

construction task on CelebA [18] for simplicity. We plot
the spatial losses with the same weight and random seed
of the two training processes with/without FFL in Figure 4.
It is readily observed that the spatial loss (MSE) converges
to a lower point after applying FFL. This indicates that the
model may converge to a better point with the help of FFL,
in line with the better perceptual quality and quantitative
performance we presented in our main paper.

E.3. Additional Ablation Studies

In the main paper, we provided the ablation studies of
vanilla AE image reconstruction on CelebA for intuitive-
ness and simplicity, intending to study the importance of
each key component for the proposed focal frequency loss
(FFL) while reducing the influence of other factors, such
as the adversarial loss. In this section, we provide the ad-
ditional ablation studies on higher-resolution images with
GAN. We show the studies of pix2pix [10] (i.e., GAN-
based method) image-to-image translation on edges →
shoes (256 × 256) in Figure 5. The results are in line with
the ablation studies in our main paper, further suggesting
the importance of each key component for FFL.

E.4. Results on Non-Photorealistic Images

We further study the benefit of the proposed focal fre-
quency loss (FFL) on non-photorealistic images. As an ex-
ample, we provide the vanilla AE image reconstruction re-



Table 3. The PSNR (higher is better), SSIM (higher is better),
LPIPS (lower is better), FID (lower is better) and LFD (lower is
better) scores for the vanilla AE image reconstruction on Dan-
booru2019 Portraits (Anime) trained with/without the focal fre-
quency loss (FFL).

Dataset FFL PSNR↑ SSIM↑ LPIPS↓ FID↓ LFD↓
Anime w/o 19.885 0.575 0.294 193.342 14.822

(64× 64) w/ 20.657 0.628 0.267 184.443 14.644

sults on Danbooru2019 Portraits [1] (Anime) in Table 3.
Empirically, we observe that all the metrics can still be
boosted by FFL. Our intuition is that FFL can also help
generate non-photorealistic images since they still possess
special frequency patterns that may be hard for a network
to learn. FFL is adaptive for dealing with these frequencies.

E.5. Higher-Resolution Results on StyleGAN2

In Figure 6, we show some higher-resolution images
synthesized by StyleGAN2 [14] trained with or without
the proposed focal frequency loss (FFL) on CelebA-HQ
(1024 × 1024). The truncation trick [13, 14] is not ap-
plied. Although the original StyleGAN2 (w/o FFL) gener-
ates plausible images in most cases, it sometimes produces
tiny artifacts on the face (Row 2) and eyes (Row 3). The
details on the teeth are missing in certain cases (Row 1).
The synthesized images by StyleGAN2 with FFL (w/ FFL)
are very photorealistic. Besides, StyleGAN2 achieves a bet-
ter FID score after applying FFL, indicating that the quality
of generated images becomes better with the help of FFL.
More random sampled synthesized images without trunca-
tion are shown in Figure 7, and the examples with trunca-
tion using ψ = 0.5 [13, 14] are presented in Figure 8. It is
observed that all the images generated by StyleGAN2 with
FFL are with very high fidelity.
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w/o FFL w/ FFL

Figure 6. Synthesis results (without truncation) of StyleGAN2 trained with/without the proposed FFL on CelebA-HQ (1024× 1024). The
model with FFL achieves the FID score of 3.374, outperforming the original StyleGAN2 without FFL of 3.733.



Figure 7. More random sampled images (without truncation) synthesized by StyleGAN2 trained with the proposed FFL on CelebA-HQ
(1024× 1024).

Figure 8. More random sampled images (with truncation applied using ψ = 0.5 [13, 14]) synthesized by StyleGAN2 trained with the
proposed FFL on CelebA-HQ (1024× 1024).


