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Appendix
We provide more detailed information in the Appendix,

including:
• Network architectures;

• Experiment and evaluation details;

• More results with visualization.

Appendix A: Network Architectures
We show structures of GraspCVAE and ContactNet in the

following sections.

A.1. GraspCVAE

Stage Configuration Output

0
Input Hand point cloud Ph 778× 3

Input Object point cloud Po 3000× 3

3D Feature extraction

1 Extract feature with two PointNet encoders
1024 (Fh)
1024 (Fo)

Calculating posterior distribution (Input concat(Fh, Fo) )

2
CVAE encoder

(fc-layers, 2048, 1024, 512, 256, 64)
64 (µ)
64 (σ2)

Latent code sampling
3 Sampling from calculated Gaussian 64 (z)

Hand mesh reconstruction (Input concat(Fo, z) )

4
CVAE decoder

(fc-layers, 1088, 1024, 256, 61)
61

(param)

4 MANO Layer Hand mesh M̂

Table 1: Training time GrasCVAE architecture.
Table 1 and Table 2 show the architecture of GraspCVAE

during training and testing respectively. The input of the two
phase are different. During training, the input is both of hand
and object point cloud and we train the network in a hand
reconstruction manner. During testing, the only input is the
object point cloud, and the network generates human hand
mesh for grasping the object.

For training, we use two PointNet encoders to get features
of hand and object point cloud as Fh and Fo. Then, they are

Stage Configuration Output

0 Input Object point cloud Po 3000× 3

3D Feature extraction
1 Extract feature with a PointNet encoder 1024 (Fo)

Latent code sampling

2
Random sampling in

standard Gaussian 64 (z)

Grasp Prediction (Input concat(Fo, z) )

3
CVAE decoder

(fc-layers, 1088, 1024, 256, 61)
61

(param)

3 MANO Layer Hand mesh M̂

Table 2: Test-time GrasCVAE architecture.

concatenated and sent to the CVAE encoder for predicting
the posterior distribution Q(z|µ, σ2). Then, a latent code
z is sampled from this distribution, and concatenated with
the object feature Fo as the input of CVAE decoder for
regressing the MANO parameters. In the end, the parameters
pass the MANO layer, where the output is the generated hand
mesh M̂.

For testing, the latent code z is randomly sampled from
the standard Gaussian distribution. Thus, we do not need the
CVAE encoder and the hand point cloud.

A.2. ContactNet
Stage Configuration Output

0
Input Hand point cloud Ph 778× 3

Input Object point cloud Po 3000× 3

3D Feature extraction

1 Extract feature with two PointNet encoders
1024 (Fh)
1024 (Fo

g )
3000× 64 (Fo

l )

Feature fusion

2
concat(add(Fh, Fo

g ).repeat(3000),
Fo

l )
3000× 1088

Contact map regression

3
1-D convolutions

(1088, 512, 256, 128, 1, sigmoid) 3000× 1

Table 3: ContactNet architecture.
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Table 3 shows the architecture of ContactNet, which takes
in both hand-object point cloud to regress the object contact
map. In the network, we use both of the object global and
local features, Fo

g and Fo
l , where the local features are used

to maintain the point correspondence.

Appendix B: Details of Experiments and Eval-
uation
B.1. Datasets

We follow [2] to use HO-3D and FPHA datasets for eval-
uating the generalization ability of the proposed method. For
FPHA dataset, the ground-truth hand mesh are fitted on the
provided hand joints. We follow [2] to exclude the huge
objects (especially milk bottle) in the FPHA dataset.

B.2. Evaluation Metrics

Perceptual score. The perceptual score is evaluated with
Amazon Mechanical Turk following [2], the layout is shown
in Fig. 1. We show 3 views of each sample. The rating score
ranges from 1 to 5. Every sample is rated by 3 workers.

Penetration. The penetration is to measure the collision
between the hand and the object. We report the maximum
penetration depth and penetration volume following [1]. The
former is calculated as the largest distance from the penetrat-
ing vertices of hand mesh to the closed object surface. And
the latter is the volume of the intersecting voxels between
the hand and object meshes. To compute this metric, we
first voxelize both hand and object mesh using the voxel
size of 0.5 cm, and then compute the number of intersecting
voxels. The result is computed by the voxel volume times
the number of intersecting voxels.

Reconstruction Error. We do not use hand reconstruc-
tion error (mesh reconstruction error on hand mesh, or kine-
matics error on hand joints) as a metric for evaluating the
quality of generated grasps. Because grasp generation has
multiple solutions, a good and reasonable grasp can be far
away from the GT (Note that only one GT grasp is provided
for each sample in datasets we used). Thus it does not make
sense in our case to measure the reconstruction error with
only one GT.

B.3. Experiments

We introduce more experiments details and results in this
section, including details of GraspCVAE training targets and
Test-time Adaptation.

B.3.1. GraspCVAE Training Targets

Table 4 shows the performance of the GraspCVAE trained
by losses we proposed and losses from [3], which are tested
on the Obman test set. Our training targets performs signifi-
cantly better.

Figure 1: AMT online evaluation layout.

Penetr Vol. ↓ Stability ↓ Percep Score ↑ Contact (%) ↑
[3] 8.41 1.66 2.97 98.25
Ours 5.12 1.52 3.54 99.97

Table 4: Performance of the GraspCVAE trained by losses
we proposed and losses from [3] on Obman dataset.

B.3.2. Test-time Adaptation

Details of TTA During TTA, each test sample is adapted
in a self-supervised manner for 10 iterations. For each itera-
tion, the single test object is augmented into a batch which
includes 32 samples, where the augmentation is random
translation in [−5, 5] cm. Due to the reason that the aug-
mentation is supposed to maintain the geometry feature of
the object, other augmentation methods, e.g. scaling and
rotation, are harmful.

Details of Different TTA Paradigms In the Sec. 4.5.3
of the paper, we compare different TTA paradigms. And we
give more details here.

• TTA-optm (offline): In this method, we only optimize
the 45-D hand joints axis-angle rotation tensor, rather
than the 61-D full hand pose parameters as in other
learning-based TTA. We observe that optimizing the
61-D full hand pose is not stable, and the results can
even become worse.

• TTA-noise (offline): In this method, when we train
the ContactNet, we injecting random noise on the in-
put 45-D hand joint rotation tensor. The model is de-
noted as ContactNet-noise. The reconstruction error
of ContactNet-noise is 0.109, higher than the origi-
nal 0.090 without injecting noise (Table ?? in paper).
The increased error demonstrate that injecting noise is
harmful for learning contact maps, and implies that the
network cannot learn to "corret" the noise. It is also
the reason for the worse results of TTA-noise compared
with original TTA.

• TTA-online: The HO-3D and FPHA datasets are video
datasets, and the TTA-online is performed on the video
clips. Because the object pose changes smoothly in the
video frames, it provides the chance for the network



Figure 2: Diversity of generated grasps with examples on four out-of-domain objects. We show 5 results for each object, where each
example is shown in 2 views.
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Figure 3: Balance between penetration volume (x-axis) and grasp
stability (y-axis, measured by simulation displacement) on the three
datasets, compared with ground truth (GT) and Grasping Field
(GF) [2]. Results close to the origin point are better, indicating a
grasp has better stability (smaller simulation displacement) with
smaller penetration.

to fit the test distribution continuously better. Besides,
the TTA-online also demonstrate that the model after
TTA does not overfit to the single test sample, because
it can continually generates grasps of the following in-
coming test samples without re-initializing the network
parameters.

Appendix C: Additional Results
Diversity of generated grasps are shown in Fig. 2. By

sampling different object poses for the same object as inputs,
our model can generate diverse grasps. We show 5 different
grasps generated by our model for each object in each row.

Penetration Volume vs. Grasp Displace. Larger pen-
etration volume can cause better grasp stability (reflected
by smaller simulation displacement) during the simulation.
However, ideal grasps should be with small penetration and
simulation displacement simultaneously, rather than achiev-

ing reasonable stability by suffering from huge penetration
volume. Thus, we draw Fig. 3 for demonstrating the balance
between them on the three datasets. Overall, our results are
very close the origin point, which demonstrated our gener-
ated grasps has both small penetration and superior stability
at the same time. With TTA, the results move vertically in
the figure, indicating the TTA is able to increase grasp sta-
bility without magnifying the penetration at the same time.
Besides, the results are comparable to or even outperform
the ground truth.

More visualization are shown in Fig. 4 for in-domain
Obman test set objects, and Fig. 5 for out-of-domain HO-3D
objects. Each result is shown in a row. All results are chosen
randomly.

More results are shown in Fig. 6 for in-domain Obman
test set objects, and Fig. 7 for out-of-domain HO-3D and
FPHA objects. We show 4 examples in each row, and each
result is shown with 3 views. All results are chosen ran-
domly.
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Input Output Input + Output (3 Views) Contact

Figure 4: Results of generated grasps given in-domain objects. Every result is shown in a row with input object, output hand
mesh, both input and output in 3 views and in contact.



Input Output Input + Output (3 Views) Contact

Figure 5: Results of generated grasps given out-of-domain. Every result is shown in a row with input object, output hand
mesh, both input and output in 3 views and in contact.



Figure 6: Generated grasps given in-domain Obman test objects. Each results is shown in 3 views. All results are chosen
randomly.



Figure 7: Generated grasps on out-of-domain HO-3D and FPHA objects. 8 out of 10 objects of HO-3D dataset and all 3
objects of FPHA dataset are visualized. We include 3 results of each object in each row. Each result is shown in 3 views. All
results are chosen randomly.


